Устройство системы питания газобаллонной установки. Системы питания двигателей, работающих на газе. Система питания газовых двигателей. Грузовые автомобили. Система питания

Система питания газовых двигателей

Переведя автомобиль на газовое топливо можно сэкономить более дорогой и дефицитный бензин. Газовое топливо более экологически чистое, от его сгорания выделяется меньше токсических веществ в атмосферу. Существенным недостатком газового топлива является его низкая объемная теплота сгорания.

Для газовых двигателей применяют сжиженные (нефтяные) газы, которые находятся в баллонах под давлением до 1.57 МПа, и сжатые (природные), которые находятся под давление до 19.6 МПа. Газовое топливо храниться в емкостях из стали или алюминиевых сплавов. Сжиженное топливо получило более широкое применение в автомобилях. В газовых двигателях, также как и в двигателях работающих на жидком топливе, может быть осуществлено внешнее или внутреннее смесеобразование. Для работы на сжатых и сжиженных газах применяют автомобили с карбюраторными двигателями, однако некоторые двигатели специально приспосабливают для работы только на газовом топливе. Рабочий цикл двигателя, работающего на газовом топливе, такой же как и у двигателя работающего на бензине, однако работа узлов и агрегатов системы при этом существенно отличается.

В двигателях с внешним смесеобразованием без наддува, газ поступает к смесительным устройствам под давлением, приблизительно близким к атмосферному, в этом случае предотвращается утечка газа во внешнюю среду и проникновение воздуха в газопровод. При избыточном давлении происходит утечка газа, а в случае наличия разрежения в газопроводе, образуется горючая смесь из газа и воздуха, может привести к взрыву. В двигателях с любым смесеобразованием с наддувом газ подводится к газовому клапану под давлением, несколько превышающим давление наддува, также происходит в двигателях с внутренним смесеобразованием без наддува. В стационарных газовых двигателях для поддержания постоянного давление, перед смесительными органами устанавливают регулятор давления газа, который автоматически поддерживает нужное давление, для работы двигателя.

Для снижения давления газа перед смесительными устройствами, устанавливают редуктор. Этот прибор тоже регулирует давление газа и отличается от регуляторов давления газа, только более высокой степенью снижения давления газа. Встречаются одно, двух и многоступенчатые редукторы, в зависимости от числа элементов, в которых происходит последовательное снижение давления газа. Редуктор также препятствует поступлению газа к смесителю при неработающем двигателе.

Рассмотрим устройство и принцип работы системы питания на сжиженном газе на примере автомобилей семейства ЗИЛ.

Рис. Схема газобаллонной установки на сжиженном газе.

1 – карбюратор, 2 – трубопровод. 3 – трубопровод подвода газа из редуктора в смеситель, 4 – трубопровод подвода газа нахолостом ходу, 5 – манометр низкого давления, 6 – кран для слива отстоя или воды в холодное время года, 7 и 8 – трубопроводы для подвода и отвода жидкости из системы охлаждения, 9 – магистральный вентиль (в кабине водителя), 10 – заправочный вентиль для жидкого газа, 11 – указатель уровня газа в баллоне, 12 и 13 – расходные вентили жидкой и парообразной фаз газа, 14 – предохранительный клапан.

Сжиженный газ из баллона, через расходный вентиль 12, клапан – фильтр, испаритель и газовый фильтр поступает к редуктору. Редуктор регулирует давление и через трубопроводы подает его в смеситель. Воздух подается сверху, через патрубок газового смесителя, который вместе с поступившим в смеситель газом, образует газовоздушную смесь, поступающую потом через впускную трубу в цилиндры двигателя. Редуктор низкого давления .

Рис. Схема работы двухступенчатого редуктора.

А – при закрытом магистральном вентиле, б – во время пуска и работы двигателя, 1 и 10 – мембраны второй и первой ступеней, 2, 9 – пружины второй и первой ступеней, 3 – коническая пружина, 4 – обратный клапан, 5 – дроссельная заслонка, 6 и 8 – двухплечие рычаги второй и первой ступеней, 7 и 11 – клапаны второй и первой ступеней, 12 – мембрана разгрузочного устройства, 13 – дозатор-экономайзер, 14 и 19 – трубопроводы для газа, 15 – воздушный фильтр, 16 – смесительная камера, 17 – впускной трубопровод, 18 – вакуумный трубопровод, 20 – предохранительный клапан, I – первая ступень редуктора, II – вторая ступень редуктора, А – атмосферная полость, Б – вакуумная полость, В – полость экономайзерного устройства.

Каждая ступень, двухступенчатого мембранно – рычажного редуктора имеет клапаны 7 и 11, пружину 3, двуплечие рычаги 6 и 8, которые соединяют шарнирно мембрану с клапаном.

Клапан первой ступени находится в открытом положении под действием пружины 9 и мембраны 10, двуплечего рычага 8, давление в полости первой ступени I, остается постоянным и равным атмосферному при неработающем двигателе и закрытом расходном вентиле.

Клапан II, второй ступени, при неработающем двигателе, находится в закрытом положении и плотно прижат к седлу пружинами конической и цилиндрической через двуплечий рычаг 6.

Если включен электромагнитный клапан и открыт расходный вентиль газ поступает в полость первой ступени редуктора. Мембрана 1, преодолевает усилие пружины 3, прогибается и через рычаг 6, закрывает клапан 7. Давление газа в полости первой ступени регулируется изменением усилия пружины 2 в пределах гайки 0,16….0,18 МПа. Манометр, по которому контролируется уровень давления, расположен в кабине водителя.

Когда дроссельные заслонки полуоткрыты (рис. б), при запуске двигателя и его работе на средних нагрузках, под дроссельными заслонками создается вакуум, который передается в полость В экономайзера. Под вакуумом мембраны вакуумного разгрузочного устройства прогибается вниз и сжимает коническую пружину3, разгружая клапан 7 второй ступени. Клапан из первой ступени открывается, преодолевает сопротивление цилиндрической пружины 2 мембраны 1. Газ заполняет полость второй ступени, поступает в смеситель по трубопроводу 19.

При полном открытии дроссельных заслонок, вакуум в смесительной камере 16 становится достаточным для открытия обратного клапана 4 и газ начинает поступать дополнительно через дозатор – экомайзер 13.При увеличении подачи газа через воздухопровод 14 и 19, газовоздушная смесь обогащается и мощность двигателя увеличивается.

Газовый смеситель служит для получения горючей смеси в газобаллонных автомобилях. Существенным отличием такого автомобиля от карбюраторного является то, что подача топлива осуществляется в одинаковом с воздухом агрегатном состоянии, отсюда конструкция газового смесителя намного проще карбюратора. Такие смесители могут быть как отдельной конструкцией, так и выполненными совместно с карбюратором.

Наличие карбюратора-смесителя не говорит о том, что такой автомобиль не может работать на бензине.

Испаритель сжиженного газа предназначен для преобразования жидкого топлива в газообразное состояние. Изготавливается испаритель из алюминия и состоит из двух частей. Внутренние полости испарителя обогреваются за счет жидкости из системы охлаждения двигателя, которая подогревает газ движущийся по каналам.

Электромагнитный клапан – фильтр служит для очистки газа от механических примесей. Очищенный газ затем поступает через испаритель в редуктор и далее в смеситель.

Система питания на природном газе – это установка высокого давления. Баллоны соединены последовательно трубопроводами, заполняются такие баллоны на газозаправочных станциях, через наполнительный вентиль. Давление сжатого газа в баллонах и редукторе контролируют посредством манометров.

К недостаткам, автомобилей, работающих на газобаллоном топливе стоит отнести уменьшенную на величину массы баллонов грузоподъемность автомобилей, а также его повышенная пожароопасность. Данный текст является ознакомительным фрагментом.

Из книги Занимательная анатомия роботов автора Мацкевич Вадим Викторович

Двоичная система счисления – идеальная система для ЭВМ Мы уже говорили о том. что в нервных сетях действуют законы двоичного счисления: О или 1, ДА или НЕТ. Какими особенностями отличается двоичная система? Почему именно её избрали для ЭВМ?Мы принимаем как должное счёт до

Из книги Теплотехника автора Бурханова Наталья

27. Основные свойства газовых смесей Множество нескольких различных газов, между которыми невозможно осуществить химическое взаимодействие, называют смесью идеальных газов. Давление рассчитывается по формуле:Pi = NikT/ V,где i= 1, 2, r, называется парциальным,r– число газов в

Из книги Переделка бытовых газовых плит под биогаз автора Северилов Павел Викторович

Переделка бытовых газовых плит под биогаз. Первая задача, которая возникает после запуска биогазовой установки – это утилизация производимого биогаза. Самый простой способ утилизации – это сжигание. Но сжигать биогаз просто так для демонстрации себе и окружающим

Из книги Ближние разведчики, корректировщики и штурмовики, 1939-1945 автора Котельников Владимир Ростиславович

Основные типы двигателей Тип Система охлаждения Число и расположение цилиндров Модификация Мощность/на высоте, л.с./м Примечания Великобритания Armstrong Siddley Jaguar В 14** VIA 450/0; VID 380/0; 400/4527 Armstrong Siddley Panther В 14** VI 530/0; 625/2050 Bristol Jupiter В 9* VIFS 435/0; 465/1200 VIIIF 460/0;

Из книги Обслуживаем и ремонтируем Волга ГАЗ-3110 автора Золотницкий Владимир Алексеевич

Система питания Смесеобразование (карбюратор) Рис. 5. Трубка приемная с фильтром. Рис. 6. Замер установки поплавка относительно игольчатого клапана: 1 – поплавок; 2 – серьга для регулировки шага игольчатого клапана; 3 – игольчатый клапан; 4 – язычок для регулировки

Из книги Советы автомеханика: техобслуживание, диагностика, ремонт автора Савосин Сергей

2.1. Классификация двигателей Двигатели внутреннего сгорания можно классифицировать по следующим критериям:1. По характеру движения рабочих частей:– с возвратно-поступательным движением поршней;– роторно-поршневые (двигатели Ванкеля) (рис. 2.2). Рис. 2.2. Роторный

Из книги Грузовые автомобили. Система питания автора Мельников Илья

Грузовые автомобили. Система питания

Из книги Краткое руководство слесаря-ремонтника газового хозяйства автора Кашкаров Андрей Петрович

Система питания карбюраторного двигателя Смесеобразование в двигателях карбюраторного типа происходит в специальных устройствах, называемых карбюраторами. Карбюратор распределяет в каком количестве подавать топливо непосредственно в цилиндры двигателя. К качестве

Из книги Межотраслевые правила по охране труда на автомобильном транспорте в вопросах и ответах. Пособие для изучения и подготовки к проверке знаний автора Красник Валентин Викторович

Система питания дизельного двигателя В отличие от карбюраторных двигателей, в цилиндры которых поступает готовая горючая смесь из карбюратора, горючая смесь у дизелей образуется непосредственно в цилиндрах, куда топливо и воздух подаются раздельно. Чистый воздух

Из книги Основы рационального питания автора Омаров Руслан Сафербегович

Система пуска двигателей Система пуска автомобильного двигателя осуществляет вращение коленчатого вала с таким количеством оборотов, чтобы получились первые вспышки.Энергия, возникающая при пуске, расходуется на приведение в движение масляного, топливного, водяного

Из книги автора

Неисправности в системе питания дизельных двигателей При возникновении неисправностей в системе питания затрудняется пуск, снижается мощность двигателя и увеличивается расход топлива, возникают перебои в работе цилиндров, стуки, повышается дымность выпуска. Основные

Из книги автора

Уход за системой питания дизельных двигателей Ежедневно:– заправлять топливо в бак автомобиля в конце рабочего дня;– слить отстой из топливных фильтров;– проверить действие привода управления подачей топлива насосом высокого давления и кнопки остановки

Из книги автора

2.1.2. Преимущества газовых генераторов В электросетях общего пользования имеют место сбои, нарушение частоты тока, перепады напряжения, отключения. Это сказывается на работе всех (включая бытовые приборы) энергозависимых устройств. Возможны их поломки, выход из строя

Из книги автора

2.3. Сравнение современных бытовых газовых счетчиков В таблице 2.8 приведены сравнительные характеристики между различными бытовыми газовыми счетчиками.Таблица 2.8Сравнительные характеристики между различными бытовыми газовыми

Из книги автора

2.1.14. Освидетельствование газовых баллонов и испытание топливных систем автомобилей, работающих на газовом топливе Вопрос 110. В какие сроки должны подвергаться периодическому освидетельствованию баллоны для компримированного природного газа (КПГ) и газа сжиженного

Из книги автора

10. КУЛЬТУРА ПИТАНИЯ ЗДОРОВОГО ЧЕЛОВЕКА. РЕЖИМ ПИТАНИЯ Цель: ознакомиться с основными понятиями культуры и режима питанияКультура питания – это знание: основ правильного питания; свойств продуктов и их воздействия на организм, умение их правильно выбирать и

Тема 8. Система питания газобаллонного автомобиля

Упрощенная схема системы питания газобаллонного автомобиля

1 – Топливный бак. Предназначен для хранения запаса бензина на автомобиле.

2 – Баллон. Предназначен для хранения запаса сжиженного газа на автомобиле

3 – Коробка вентиляции с блоком арматуры. Здесь находятся наполнительный и расходный вентили, а также указатель уровня газа

5 – Переключатель "Бензин-Газ". Клавиша переключателя имеет три положения: Бензин – Выключено – Газ

6 – Топливопровод сжиженного газа

7 – Газовый шланг низкого давления

8 – Шланг управления

ФГ – Фильтр газа

ФБ – Фильтр бензина

БН – Бензонасос. Штатный бензонасос двигателя

КЛГ – Клапан газа электромагнитный. При подаче напряжения питания от переключателя 5 клапан открывается

КЛБ – Клапан бензина электромагнитный. При подаче напряжения питания от переключателя 5 клапан открывается

Р – Газовый редуктор. В редукторе газ испаряется и переходит из жидкого состояния в газообразное. Для испарения газа корпус редуктора подогревается горячим тосолом из двигателя. Редуктор также понижает давление газа от 12…15 кГ/см 2 до атмосферного

Д – Дозатор. Позволяет регулировать количество газа, поступающего в двигатель и тем самым устанавливать либо экономичный режим движения, либо динамичный.

Принцип действия системы питания газобаллонного автомобиля

Работа двигателя на бензине ничем не отличается от работы обычной системы питания карбюраторного двигателя. А именно, бензонасос БН всасывает бензин из бака 1. пропускает его через топливный фильтр ФБ и через открытый клапан КЛБ подает его в карбюратор КС. В карбюраторе бензин смешивается с воздухом и образует топливно-воздушную горючую смесь. Для переключения двигателя на газ переключатель 5 переводят сначала в положение "Выключено" (в этом положении оба клапана закрыты) и дожидаются, когда остаток бензина в поплавковой камере карбюратора будет израсходован. Затем переводят переключатель в положение "Газ". При этом открывается газовый клапан КЛГ и двигатель начинает работать на газе.

Баллон для сжиженного газа стальной, сварной. Давление сжиженного газа в баллоне зависит от соотношения пропана и бутана в смеси, не зависит от степени заполнения баллона и находится в пределах 12…15 кГ/см 2 . На баллоне закреплена коробка вентиляции с блоком арматуры. В блоке арматуры находятся наполнительный и расходный вентили. Наполнительный вентиль открывают на время заправки баллона сжиженным газом, по окончании заправки этот вентиль закрывают. Расходный вентиль закрывают при длительной стоянке автомобиля, в остальных случаях этот вентиль открыт. С блоком арматуры связан поплавковый механизм, расположенный внутри баллона и связанный со стрелочным указателем на наружной стороне блока арматуры. Кроме этого поплавковый механизм связан с ограничительным клапаном, который закрывает наполнительную магистраль при заполнении баллона на 90%. Газовая "подушка" объемом 10% необходима для компенсации теплового расширения сжиженного газа. Сжиженный газ имеет большой коэффициент теплового расширения. При отсутствии в баллоне газовой фазы увеличение температуры на 1 градус приводит к увеличению давления на 7 кГ/см 2 . Это может стать причиной разрушения баллона, поэтому заполнение баллона сжиженным газом на 100% не разрешается.

Заправочное устройство 4 обычно выводится наружу автомобиля, чтобы возможные утечки газа из устройства не попадали в салон автомобиля или кабину. В заправочном устройстве имеется шариковый клапан, пропускающий газ из заправочного шланга в баллон и не пропускающий его в обратном направлении.

Отбор сжиженного газа из баллона осуществляется с его дня, из жидкой фазы. По топливопроводу сжиженный газ поступает в фильтр ФГ и затем через открытый клапан КЛГ поступает в редуктор-испаритель. Корпус редуктора-испарителя подогревается горячим тосолом из системы охлаждения двигателя. Это необходимо для испарения сжиженного газа и перехода его в газообразное состояние. Газовый редуктор диафрагменного типа двухступенчатый, понижает давление газа до величины атмосферного давления. Топливопровод 6 – медная трубка, шланг управления 8 из маслостойкой резины, газовый шланг 7 из маслостойкой резины, с большим проходным сечением.

При неработающем двигателе в карбюраторе разрежения нет и атмосферное давление по шлангу управления 8 передается в редуктор Р, что приводит к его закрытию. Газ из редуктора не выходит. При работающем двигателе в карбюраторе образуется разрежение, которое по шлангу управления 8 передается в редуктор и снимает блокировку подачи газа в двигатель. Разрежение в смесительной камере карбюратора вызывает всасывание газа из газового шланга 7 низкого давления через дозатор Д. В карбюраторе-смесителе КС газ смешивается с воздухом и образует газовоздушную горючую смесь, которая поступает в цилиндры двигателя. Дозатор Д представляет собой обычный кран, которым можно увеличивать или уменьшать проходное сечение газовой магистрали низкого давления. При уменьшении количества газа в смеси, она становится более бедной, движение автомобиля становится более экономичным, но динамика автомобиля ухудшается. При вращении дозатора в другую сторону, всё изменяется в обратном направлении.

Газовый редуктор Ловато (Lovato ) – Италия

Малогабаритный газовый редуктор-испаритель Ловато предназначен для применения на легковых автомобилях – имеет в своем составе следующие функциональные элементы:

Испаритель сжиженного газа,

Двухступенчатый редуктор давления,

Разгрузочное устройство,

Устройство для принудительной подачи газа в смеситель,

Регулятор холостого хода.

Редуктор-испаритель Ловато: 1 – входной канал для сжиженного газа, 2 – седло клапана первой ступени, 3 – диафрагма второй ступени, 4 – диафрагма разгрузочного устройства, 5 – пружина разгрузочного устройства, 6 – электромагнит, 7 – постоянный магнит, 8 – рычаг клапана второй ступени, 9 – регулировочный винт холостого хода, 10 – клапан второй ступени, 11 – канал, 12 – диафрагма первой ступени, 13 – рычаг клапана первой ступени, 14 – пружина, 15 – клапан первой ступени, А – полость камеры первой ступени, В – полость камеры второй ступени, С – полость теплообменника, D – полость разгрузочного устройства, Е – штуцер разгрузочного устройства.

Редуктор состоит из корпуса, двух крышек и деталей клапанных механизмов. В полости С непрерывно циркулирует горячий тосол из системы охлаждения двигателя (подвод и отвод тосола на рисунке не показан). В результате этого весь корпус редуктора прогревается до рабочей температуры двигателя и, поэтому, сжиженный газ, попадая через канал 1 в полость А, испаряется и переходит в газообразное состояние. При этом газ воздействует на диафрагму первой ступени 12 и, преодолевая сопротивление пружины 14, смещает её вниз и через рычаг 13 закрывает клапан первой ступени 15. Равновесие силы давления газа и силы упругости пружины достигается при давлении 0,05…0,07 МПа (0,5…0,7 кГ/см 2).

Из полости А через канал 11 газ поступает к клапану первой ступени 10 и, проходя через него, заполняет полость В второй ступени. При этом газ воздействует на диафрагму 3 второй ступени, поднимает её, и через рычаг 8 закрывает клапан 10. Равновесие наступает при давлении в полости В 50…100 Па (0,0005…0,001 кГ/см 2), то есть, чуть выше атмосферного.

При работающем двигателе разрежение из смесителя передается по шлангу в полость В первой ступени и газ из неё поступает в смеситель. При этом давление в полости В снижается, диафрагма 3 опускается, открывает клапан 10 второй ступени, и газ из полости А поступает в полость В, а оттуда в смеситель. По мере расхода газа из полости А давление в ней снижается, диафрагма 12 поднимается, открывает клапан первой ступени 15 и газ из канала 1 поступает в полость А.

Разгрузочное устройство D предназначено для принудительного закрытия клапана второй ступени 10 при неработающем двигателе. Это необходимо для обеспечения пожарной безопасности автомобиля. Полость D связана с штуцером Е и далее, через шланг, с задроссельным пространством двигателя. При неработающем двигателе в полости D атмосферное давление и пружина 5 через рычаг 8 принудительно закрывает клапан 10 второй ступени, в результате чего газ из редуктора не выходит. При работающем двигателе разрежение из задроссельного пространства по шлангу, через штуцер Е передается в полость D. При этом диафрагма разгрузочного устройства, преодолевая сопротивление пружины 5, опускается и не препятствует движению рычага 8, которым управляет диафрагма 3 второй ступени.

На короткое плечо рычага 8 воздействует пружина и регулировочный винт 9 холостого хода. При помощи этого винта настраивают работу двигателя на холостом ходу.

Электромагнит 6 используется для принудительного открытия клапана 10 второй ступени. Это может потребоваться для обогащения смеси при пуске двигателя, или для выпуска газа из редуктора перед его обслуживанием или ремонтом. Для включения электромагнита водитель нажимает на кнопку управления в кабине. При этом напряжение 12В подается на обмотку электромагнита 6. Его сердечник втягивается внутрь обмотки и воздействует на рычаг 8, открывая клапан 10 второй ступени, – газ поступает в смеситель. Сердечник электромагнита выступает наружу и, в случае необходимости, водитель может нажать на него непосредственно, со стороны моторного отсека.Документ

116 5.9.Техническое обслуживание системы питания газобаллонного автомобиля ………………………………………………………………………...118 Варианты тематического оценивания... имеет. 5.9. Техническое обслуживание системы питания газобаллонного автомобиля ЕТО. Перед выездом проверить...

  • Рабочая учебная программа по предмету «Устройство автомобиля» для подготовки специалистов по профессии 19 Слесарь по ремонту автомобилей», срок обучения 3 года

    Рабочая учебная программа

    10. Система питания двигателя газобаллонного автомобиля Принципиальная схема газобаллонных установок, ... 8 Система питания инжекторного двигателя 4 9 Система питания дизельного двигателя 18 12 10 Система питания двигателя газобаллонного автомобиля 8 ...

  • Методические указания

    И работу элементов системы питания газобаллонного автомобиля . Задания для самостоятельной работы 1. Начертить схему системы питания газобаллонного автомобиля ГАЗ-53 ...

  • Газовыми называются карбюраторные двигате­ли, работающие на га­зообразном топливе – сжатых и сжиженных газах. Система питания таких двигателей имеет специ­альное газовое оборудование. Имеется также до­полнительная резервная система, обес­печивающая при необходимости ра­боту газового двигателя на бензине.

    Горючие газы, используемые в газо­баллонных автомобилях, могут быть естест­венными и искусственными. Есте­ственные (природные) газы добывают из подземных газовых или нефтяных скважин. Искусственные газы являются побочными продуктами, получаемыми на химических или металлургических заводах.

    Сжиженными (сжижаемыми) газами называют такие, которые пере­ходят из газо­образного состояния в жидкое при нормальной температуре и небольшом давлении. К ним относят смеси углеводородов, получаемых при переработке нефти. Для газобаллон­ных автомобилей использование сжиженных газов предпочтительнее, чем сжатых.

    Сжатыми (сжимаемыми) называют газы, которые при обычной температу­ре ок­ружающей среды и высоком давле­нии сохраняют газообраз­ное состояние. Природный газ, приме­няемый для газобаллонных автомоби­лей, работающих на сжатых газах, со­стоит в основном из метана. Можно использовать и промышленные газы: светильный, коксовый и син­тез-газ, но нужно помнить, что они содержат окись углерода (СО) и по­этому ядовиты.

    Таким образом, газовое топливо применяют в двух видах: сжиженный нефтя­ной газ и сжатый природный газ. Сжиженный нефтяной газ выпускают двух марок: СПБТЗ и СПБТЛ – смесь пропана и бутана техничес­кая зимняя и летняя. Сжатый природный газ выпускают также двух марок (А и Б), различающихся относительной плотностью газа.

    Газобаллонные автомобили, рабо­тающие на сжиженных газах, по сравне­нию с ав­томобилями, работающими на сжатых газах, имеют сле­дующие пре­имущества: больше грузоподъемность автомоби­ля, так как баллоны легче и их число меньше; меньше рабо­чее давление в газобал­лон­ной установке, и, следовательно, такие системы на­дежнее и безопаснее; выше теплотворная способность газо­воздушной смеси, что способствует уве­личению мощности двигателя; больше концентрация тепловой энер­гии в единице объема, что позволяет увеличить радиус действия автомобиля; проще заправочные станции; проще перевозка сжиженных газов на боль­шие расстояния и различными ви­дами транспорта.

    В систему питания двигателя, работающего на газе, входят баллоны для газа, вен­тили, ма­нометры, газопроводы высокого и низкого давлений, редукторы с дозирую­щими устройствами и смеситель.

    При работе двигателя газ из баллонов через фильтр проходит в ре­дуктор. Из ре­дуктора через дозирующее устройство газ проходит в смеси­тель, где образуется газо­воздушная горючая смесь. Смесь под действием разрежения при такте впуска поступает в цилиндры двигателя. Процесс сгорания смеси и отвода отработав­ших газов происхо­дит так же, как и в карбюраторных двигателях.

    Кроме основной, имеется резервная система питания, обеспе­чиваю­щая работу двигателя на бензине в необходимых случаях (неисправности системы, израсходован весь газ в баллонах и др.). В резервную систему пи­тания входят топливный бак, топлив­ный фильтр, топливный насос и кар­бюратор. При этом длительная работа двигателя на бензине не рекоменду­ется, так как приводит к повышенному износу двигателя.

    Система питания двигателя, работающего на сжатом природном газе состоит из следующих основных составляющих:

    • контур высокого давления (заправочный штуцер, трубопроводы, баллоны)
    • область перехода от контура высокого давления к стороне низкого давления (редуктор давления газа с клапаном высокого давления для работы на газе и датчиком давления газа)
    • контур низкого давления (гибкий шланг, газовая распределительная магистраль, датчик газовой распределительной магистрали, форсунка)

    Рис. Система впрыска сжатого природного газа:
    1 – газовый баллон 1 с запорным и обратным клапаном; 2 – газовый баллон 2 с запорным клапаном; 3 – газовый баллон 3 с запорным клапаном; 4 – газовый баллон 4 с запорным клапаном; 5 – заправочная горловина со встроенным фильтром и обратным клапаном; 6 – запорный клапан с клапаном отключения подачи газа, ограничителем потока газа, термическим предохранителем и запорным краном; 7 – трубопровод высокого давления; 8 – гибкий шланг; 9 – газовая распределительная магистраль; 10 – датчик газовой распределительной магистрали; 11 – форсунка; 12 – двигатель; 13 – двойное зажимное кольцо; 14 – клапан высокого давления; 15 – датчик давления газа; 16 – редуктор давления газа с клапаном высокого давления для работы на газе

    Заправочная газовая горловина 5 оснащена обратным клапаном и металлическим фильтром. Газовые трубопроводы высокого давления 7 изготавливаются из нержавеющей стали и рассчитаны на давление до 1000 кгс/см2. Они соединяют приемный патрубок с первым запорным клапаном, все четыре запорных клапана между собой, а также последний запорный клапан с регулятором давления газа. Чтобы обеспечить достаточную герметичность газовых магистралей, отдельные детали на обеих сторонах соединяются при помощи двойного зажимного кольца 13. При заправке природный газ подается в заправочную горловину со встроенным фильтром и обратным клапаном далее по газовым магистралям к запорному клапану первого газового баллона. Одновременно с этим газ идет по газовым магистралям к запорному клапану второго газового баллона, оттуда дальше к запорным клапанам остальных баллонов. Из баллонов газ под высоким давлением поступает в редуктор давления газа. Если блок управления двигателя подает сигнал управления, открывается клапан высокого давления 14 редуктора высокого давления для работы на газе.

    Редуктор давления газа должен обеспечивать снижение давления газа с 200 до 6 кгс/см2. Снижение давления в редукторе происходит в одной ступени.

    Клапан высокого давления для работы на газе 7 представляет собой соленоид и при подаче на него напряжения или отсутствии такового открывает /закрывает доступ к ступени понижения давления газа регулятора давления газа. В обесточенном состоянии клапан высокого давления для работы на газе закрыт.

    Датчик давления 4 в газовом баллоне измеряет текущее давление газа в системе на стороне высокого давления. Благодаря этим показаниям блок управления двигателя распознает уровень наполненности баллона.

    В камере низкого давления 9 происходит переход давления газа от высокого давления к низкому давлению. Если клапан высокого давления для работы на газе открыт блоком управления двигателя, газ под высоким давлением поступает к поршню редуктора 10 в камере высокого давления 8. Поршень редуктора соединен с камерой низкого давления посредством подпружиненной мембраны 11.

    Рис. Редуктор давления газа:
    1 – ступень понижения давления; 2 – клапан избыточного давления; 3 – выход газа при низком давлении к двигателю; 4 – датчик давления в баллоне; 5 – вход газа при высоком давлении из газовых баллонов; 6 – фильтр; 7 – клапан высокого давления для режима эксплуатации на газе; 8 – камера высокого давления; 9 – камера низкого давления; 10 – поршень редуктора; 11 – мембрана; 12 – пружина

    Если давление газа в камере низкого давления меньше 6 кгс/см2, то мембрана и поршень силой пружины поднимаются по направлению вверх. Поршень открывает соединение с камерой высокого давления. Газ, таким образом, поступает из камеры высокого давления в камеру низкого давления. Благодаря поступающему газу повышается давление в камере низкого давления. Как только давление достигает 6 кгс/см2, мембрана под действием давления возвращается в нижнее положение, преодолевая усилие пружины. Поршень, соединенный с мембраной, закрывает соединение с камерой высокого давления. Если происходит потребление газа двигателем, то давление в камере низкого давления падает. Пружина выталкивает мембрану опять по направлению вверх, поршень вновь открывается и газ снова поступает в камеру низкого давления.

    Газовая распределительная магистраль оснащена электрическими форсунками подачи газа 11, расположенных во впускных каналах цилиндров, а также датчиком газовой распределительной магистрали 10. В режиме работы на газе они получают управление от блока управления двигателя при помощи сигнала с широтно-импульсной модуляцией. Время открытия форсунок зависит от частоты вращения коленчатого вала двигателя, нагрузки на двигатель, качество природного газа, давление газа в газовой распределительной магистрали.

    Смесеобразование в режимах работы на газе и на бензине регулируется блоком управления двигателя по сигналам лямбда-зонда. В зависимости от качества газа блок управления двигателя проводит адаптацию смесеобразования. Лямбда-зонд измеряет состав ОГ и посылает полученные результаты на блок управления двигателя. На основании полученного сигнала блок управления двигателя рассчитывает требуемые пропорции смеси (воздух/газ). Для управления процессом смесеобразования блок управления двигателя изменяет время открытия клапанов подачи газа.

    Клапаны отключения подачи газа представляют собой электромагнитные клапаны и получают управление с блока управления двигателя. Они являются составной частью запорных клапанов 6 и перекрывают доступ к газовым баллонам. При эксплуатации автомобиля на газе они открываются блоком управления двигателя, а в процессе заправки – от заправочного давления природного газа.

    Запуск двигателя при температуре охлаждающей жидкости ниже 15°C осуществляется в режиме работы на бензине, а при температуре охлаждающей жидкости выше 15°C – на газе.

    1. Топливо

    В качестве топлива для газобаллонных автомобилей применяют-ся сжатые и сжиженные горючие газы, имеющие достаточно высокую теплотворность и высокое октановое число.

    Газовоздушная горючая смесь сгорает более полно, в результате чего отработавшие газы со-держат меньше вредных примесей и меньше засоряется окружаю-щая среда. Наибольшее распространение в качестве топлива для газобаллонных автомобилей получили сжиженные газы — главным образом бутано-пропановые смеси. Такие смеси получают на нефтепе-рерабатывающих заводах в качестве побочного продукта.

    В среде окружающего воздуха бутано-пропановая смесь находит-ся в парообразном состоянии. При сравнительно небольшом повыше-нии давления {до 16 кгс/см2) и обычной температуре бутано-пропановая смесь переходит в жидкое состояние и в таком виде хранится в стальных баллонах.

    При работе двигателя на сжиженном газе помимо уменьшения вредных примесей в отработавших газах уменьшается разжижение смазки, нагарообразование и износ деталей при пуске холодного двига-теля.

    К недостаткам газобаллонных автомобилей следует отнести умень-шенную грузоподъемность (за счет массы газобаллонной установки), а также повышение "пожароопасности и усложнение системы питания.

    2. Газобаллонная установка

    Газобаллонная установка для сжиженных газов (рис. 56) состоит из баллона с арматурой, вентилей, испарителя, редуктора и карбю-ратора-смесителя.

    Газ из баллона по трубкам через вентили, испаритель и фильтр поступает к редуктору, снижающему его давление до рабочего, и да-лее в карбюратор-смеситель. Газовоздушная смесь из карбюратора-смесителя поступает в цилиндры двигателя.

    Баллон Для сжиженного газа делают сварным из листовой стали, на нем устанавливаются расходные вентили для пара и жидкого газа, указатель уровня жидкого газа, предохранительный клапан, наполнительный вентиль и вентиль для контроля заполнения баллона жид-ким газом. Баллон заполняется жидким газом на 90% объема с тем, чтобы над поверхностью жидкого газа была паровая подушка.

    Вентили имеют одинаковое устройство и отличаются друг от друга только количеством и расположением штуцеров, к которым присо-единяются трубки.

    Вентиль состоит из корпуса, клапана, диафрагмы, зажимной и упорной гаек, штока с резьбой и маховичка. Диафрагма изолирует при-вод клапана от полости, где он помещен; в противном случае при от-крытом клапане газ сможет проникнуть наружу через неплотно при-легающую резьбу штока.

    Испаритель служит для испарения жидкого газа и располагается из выпускном трубопроводе или глушителе.

    Рис. 56. Схема газобаллонной установки для сжиженного газа

    Редуктор (рис. 57) понижает давление сжиженного газа до рабо-чего и препятствует поступлению газа к смесителю при неработаю-щем двигателе. Двухступенчатые редукторы мембранно-рычажного типа имеют две камеры. В первой давление газа снижается до 2,5-»—3,0 кгс/см8, во второй оно несколько выше атмосферного (на 10— 12 мм водяного столба). Камеры сообщаются между собой отверсти-ем с клапаном. В камере первой ступени имеется резинотканевая диафрагма, пружина, коленчатый рычаг» клапан, штуцер с фильтром, предохранительный клапан, крышка и регулировочная гайка. Ка-мера второй ступени подобна по устройству камере первой ступени, но у нее отсутствует штуцер с фильтром и предохранительный клапан,

    А дополнительно установлены вакуумный разгружатель, дозирующее устройство и обратный клапан.

    При закрытом магистральном вентиле газ к редуктору не посту-пает, пружина камеры первой ступени давит на диафрагму и прогиба-ет ее внутрь (рис. 57, а). Прогнутая диафрагма заставляет коленчатый рычаг держать клапан первой ступени открытым. В камере второй сту-пени пружина отводит диафрагму вверх и клапан закрыт. Пружина вакуумного разгружателя при неработающем двигателе отжимает мембрану второй ступени вверх, помогая ей удерживать клапан за-крытым.

    При открытом магистральном вентиле газ через фильтр поступает в камеру первой ступени. Как только давление в камере достигнет 2,5—3 кгс/см2, мембрана под действием давления газа, преодолевая сопротивление пружины, переместится вниз и при помощи коленча-того рычага закроет клапан. Поступление газа в камеру первой сту-пени прекратится. В камеру второй ступени газ поступать не будет, так как мембрана и вакуумный разгружатель удерживает клапан вто-рой ступени закрытым.

    В момент пуска и во время работы двигателя разрежение во впуск-ном трубопроводе передается по трубке в полость вакуумного разгру-жателя (рис. 57, б). Его мембрана прогибается вниз, сжимает кониче-скую пружину и освобождает мембрану второй ступени. Упругости пружины диафрагмы второй ступени недостаточно для удержания кла-пана в закрытом положении и он открывается под действием разреже-ния пуска и давления газа, поступающего из камеры первой ступени.

    Рис. 57. Схема работы двухступенчатого редуктора:

    А — при закрытом магистральном вентиле; б — во время работы двигателя под нагрузкой; в — во время работы двигателя на холостом ходу

    При малой частоте вращения коленчатого вала холостого хода (рис. 57, в) газ по отдельной трубке холостого хода поступает за дрос-сельную заслонку карбюратора-смесителя; обратный клапан редук-тора при этом закрыт. На средних и больших нагрузках через доза-тор и обратный клапан по резиновому шлангу большого диаметра газ поступает к форсунке карбюратора-смесителя.

    Дозирующее устройство устанавливает для каждого вида газа в за-висимости от его теплотворности необходимое соотношение между газом и воздухом.

    Конический винтовой дозатор состоит из корпуса с фланцем, ко-нуса, маховичка и патрубка. Отвертывая или завертывая маховичок, можно точно регулировать положение корпуса относительно его гнезда и, следовательно, проходимое сечение для газа. Винтовой до-затор служит также для отключения редуктора от двигателя при ра-бе те из бензине, что позволяет не снимать шлангов и ускоряет пере-вод работы двигателя с бензина на газ и обратно. Обратный клапан препятствует проникновению воздуха в камеру второй ступени при работе двигателя и а холостом ходу.

    Карбюратор-смеситель (см. рис. 56) служит для приготовления газовоздушной смеси в газобаллонных автомобилях. В стандартные карбюраторы внесены изменения, дающие возможность установить в смесительную камеру форсунку, а за дроссельные заслонки подвести трубку для подачи газа при работе двигателя на холостом ходу.

    Переоборудование карбюратора не исключает возможности рабо-ты двигателя на бензине. На автомобилях, предназначенных для ра-боты на газе, вместо карбюратора устанавливается смеситель.



    Поделиться: