Как определить модуль перемещения тела по графику. Траектория. Частные случаи вращательного движения

Проекции вектора перемещения

При решении задач по физике часто используют проекции вектора перемещения на координатные оси. Проекции вектора перемещения на координатные оси могут быть выражены через разности координат его конца и начала. Например, если материальная точка переместилась из точки А в точку В, то при этом вектор перемещения (рис. 1.3).

Выберем ось ОХ так, чтобы вектор лежал с этой осью в одной плоскости. Опустим перпендикуляры из точек А и В (из начальной и конечной точек вектора перемещения) до пересечения с осью ОХ. Таким образом мы получим проекции точек А и В на ось Х. Обозначим проекции точек А и В соответственно А x и В x . Длина отрезка А x В x на оси ОХ – это и есть проекция вектора перемещения на ось ОХ, то есть

ВАЖНО!
Напоминаю для тех, кто не очень хорошо знает математику: не путайте вектор с проекцией вектора на какую-либо ось (например, S x). Вектор всегда обозначается буквой или несколькими буквами, над которыми находится стрелка. В некоторых электронных документах стрелку не ставят, так как это может вызвать затруднения при создании электронного документа. В таких случаях ориентируйтесь на содержание статьи, где рядом с буквой может быть написано слово «вектор» или каким-либо другим способом вам указывают на то, что это именно вектор, а не просто отрезок.

Рис. 1.3. Проекция вектора перемещения.

Проекция вектора перемещения на ось ОХ равна разности координат конца и начала вектора, то есть

Аналогично определяются и записываются проекции вектора перемещения на оси OY и OZ:

Здесь x 0 , y 0 , z 0 - начальные координаты, или координаты начального положения тела (материальной точки); x, y, z - конечные координаты, или координаты последующего положения тела (материальной точки).

Проекция вектора перемещения считается положительной, если направление вектора и направление координатной оси совпадают (как на рис 1.3). Если направление вектора и направление координатной оси не совпадают (противоположны), то проекция вектора отрицательна (рис. 1.4).

Если вектор перемещения параллелен оси, то модуль его проекции равен модулю самого Вектора. Если вектор перемещения перпендикулярен оси, то модуль его проекции равен нулю (рис. 1.4).

Рис. 1.4. Модули проекции вектора перемещения.

Разность между последующим и начальным значениями какой-нибудь величины называется изменением этой величины. То есть проекция вектора перемещения на координатную ось равна изменению соответствующей координаты. Например, для случая, когда тело перемещается перпендикулярно оси Х (рис. 1.4) получается, что относительно оси Х тело НЕ ПЕРЕМЕЩАЕТСЯ. То есть перемещение тела по оси Х равно нулю.

Рассмотрим пример движения тела на плоскости. Начальное положение тела – точка А с координатами х 0 и у 0 , то есть А(х 0 , у 0). Конечное положение тела – точка В с координатами х и у, то есть В(х, у). Найдём модуль перемещения тела.

Из точек А и В опустим перпендикуляры на оси координат ОХ и OY (рис. 1.5).

Рис. 1.5. Движение тела на плоскости.

Определим проекции вектора перемещения на осях ОХ и OY:

На рис. 1.5 видно, что треугольник АВС – прямоугольный. Из этого следует, что при решении задачи может использоваться теорема Пифагора , с помощью которой можно найти модуль вектора перемещения, так как

По теореме Пифагора

S 2 = S x 2 + S y 2

Откуда можно найти модуль вектора перемещения, то есть длину пути тела из точки А в точку В:

11) Основные кинематические характеристики движения: скорость и ускорение

Основными кинематическими характеристиками движущейся точки являются её скорость и ускорение, значения которых определяются по уравнениям движения через первые и вторые производные по времени от s или от х, у, z, или от r (см. Скорость, Ускорение).

Способы задания движения твёрдого тела зависят от вида, а число уравнений движения - от числа степеней свободы тела (см.Степеней свободы число). Простейшими являются Поступательное движение и Вращательное движение твёрдого тела. При поступательном движении все точки тела движутся одинаково, и его движение задаётся и изучается так же, как движение одной точки. При вращательном движении вокруг неподвижной оси z (рис. 3 ) тело имеет одну степень свободы; его положение определяется углом поворота φ, а закон движения задаётся уравнением φ = f (t ). Основными кинематическими характеристиками являются угловая скорость ω=dφ/dt и угловое ускорение ε = dω/dt тела. Величины ω и ε изображаются в виде векторов, направленных вдоль оси вращения. Зная ω и ε, можно определить скорость и ускорение любой точки тела.

Более сложным является движение тела, имеющего одну неподвижную точку и обладающего 3 степенями свободы (например,Гироскоп, или волчок). Положение тела относительно системы отсчёта определяется в этом случае какими-нибудь 3 углами (например, Эйлера углами: углами прецессии, нутации и собственного вращения), а закон движения - уравнениями, выражающими зависимость этих углов от времени. Основными кинематическими характеристиками являются мгновенная угловая скорость ω и мгновенное угловое ускорение ε тела. Движение тела слагается из серии элементарных поворотов вокруг непрерывно меняющих своё направление мгновенных осей вращения ОР , проходящих через неподвижную точку О (рис. 4 ).

Самым общим случаем является движение свободного твёрдого тела, имеющего 6 степеней свободы. Положение тела определяется 3 координатами одной из его точек, называемых полюсом (в задачах динамики за полюс принимается центр тяжести тела), и 3 углами, выбираемыми так же, как для тела с неподвижной точкой; закон движения тела задаётся 6 уравнениями, выражающими зависимости названных координат и углов от времени. Движение тела слагается из поступательного вместе с полюсом и вращательного вокруг этого полюса, как вокруг неподвижной точки. Таким, например, является движение в воздухе артиллерийского снаряда или самолета, совершающего фигуры высшего пилотажа, движение небесных тел и др. Основными кинематическими характеристиками являются скорость и ускорение поступательной части движения, равные скорости и ускорению полюса, и угловая скорость и угловое ускорение вращения тела вокруг полюса. Все эти характеристики (как и кинематические характеристики для тела с неподвижной точкой) вычисляются по уравнениям движения; зная эти характеристики, можно определить скорость и ускорение любой точки тела. Частным случаем рассмотренного движения является плосконаправленное (или плоское) движение твёрдого тела, при котором все его точки движутся параллельно некоторой плоскости. Подобное движение совершают звенья многих механизмов и машин.

В К. изучают также сложное движение точек или тел, то есть движение, рассматриваемое одновременно по отношению к двум (и более) взаимно перемещающимся системам отсчета. При этом одну из систем отсчета рассматривают как основную (ее еще называют условно неподвижной), а перемещающуюся по отношению к ней систему отсчёта называют подвижной; в общем случае подвижных систем отсчёта может быть несколько.

При изучении сложного движения точки её движение, а также скорость и ускорение по отношению к основной системе отсчёта называют условно абсолютными, а по отношению к подвижной системе - относительными. Движение самой подвижной системы отсчёта и всех неизменно связанных с ней точек пространства по отношению к основной системе называют переносным движением, а скорость и ускорение той точки подвижной системы отсчёта, с которой в данный момент совпадает движущаяся точка, называют переносной скоростью и переносным ускорением. Например, если основную систему отсчета связать с берегом, а подвижную с пароходом, идущим по реке, и рассмотреть качение шарика по палубе парохода (считая шарик точкой), то скорость и ускорение шарика по отношению к палубе будут относительными, а по отношению к берегу - абсолютными; скорость же и ускорение той точки палубы, которой в данный момент касается шарик, будут для него переносными. Аналогичная терминология используется и при изучении сложного движения твёрдого тела.

12) Нормальное и тангенциальное ускорение

При криволинейном движении скорость направлена по касательной к траектории. Поскольку направление скорости постоянно изменяется, то криволинейное движение - всегда движение с ускорением, в том числе, когда модуль скорости остается неизменным В общем случае ускорение направлено под углом к скорости. Составляющая ускорения, направленная вдоль скорости, называется тангенциальным ускорением . Она характеризует изменение скорости по модулю. Составляющая ускорения, направленная к центру кривизны траектории, т.е. перпендикулярно (нормально) скорости, называется нормальным ускорением . Она характеризует изменение скорости по направлению. Здесь R - радиус кривизны траектории в данной точке. Тангенциальное и нормальное ускорение взаимноперпендикулярны, поэтому модуль полного ускорения

13) Кинематика вращательного движения: угловая скорость и угловое ускорение, их связь с линейной скоростью и ускорением

Часто для наглядного представления движения точки пользуются графиками перемещения, скорости и ускорения в функции от времени в прямоугольных координатных осях.

Рассмотрим кинематические графики для равномерного движения. Независимо от того, является оно прямолинейным или криволинейным, мы имеем для него следующие уравнения:

Из этих уравнений следует, что график перемещения равномерного движения является прямой, отсекающей на оси ординат величину s0 , т. е. величину перемещения точки в начале движения от начала отсчета (рис.а).

График скорости изображается прямой линией, параллельной оси абсцисс, так как скорость равномерного движения точки - постоянная величина v = const (рис.б).

Рассмотрим кинематические графики для равнопеременного движения. Каким бы ни было это движение - прямолинейным или криволинейным, - для него справедливы уравнения:

График перемещения равнопеременного движения является криволинейным - параболическим, так как он соответствует уравнению параболы (рис. а, б).

На оси ординат эти графики отсекают при t = О величины, соответствующие расстоянию в начале движения от начала отсчетаs0 .

График скорости изображается прямой, наклоненной к оси абсцисс (рис. в, г), и отсекает на оси ординат (при t = 0) величину начальной скорости v0 .

График ускорения равномерно-переменного движения изображается линией, параллельной оси абсцисс (оси времени) - (рис. д, е.)

При равномерно-ускоренном движении график ускорения располагаем выше оси абсцисс. При равномерно-замедленном движении - ниже (рис. е). При равномерно-замедленном движении значение скорости убывает. Это наглядно видно из (рис. г). Возможен случай, когда скорость, уменьшаясь, достигает нулевого значения (точка М на рис. г). Затем скорость изменяет свой знак и по абсолютному значению начинает увеличиваться. Здесь по существу происходит переход равномерно-замедленного движения в равномерно-ускоренное. Именно такое явление и происходит для случая, изображенного на (рис. б, д) при t = tA , т. е. при изменении алгебраического знака скорости.

Между кинематическими графиками существует определенная взаимосвязь. Так, для равномерного движения график скорости изображается линией, параллельной оси абсцисс, а график расстояния - прямой наклонной линией. Для равнопеременного движения график ускорения является прямой, параллельной оси абсцисс, график скорости - наклонная прямая, а график расстояний - параболическая кривая. Эта взаимосвязь графиков следует непосредственно из дифференциальных зависимостей, связывающих ускорение, скорость и расстояние:

Учитывая аналогию в уравнениях движения точки и уравнениях вращения тела, графическую интерпретацию можно использовать при исследовании вращательного движения, являющегося основным в технике. Здесь вместо расстояния будет фигурировать угол поворота, вместо скорости - угловая скорость, вместо ускорения - угловое ускорение.

14) Масса

физическая величина, одна из основных характеристик материи, определяющая её инерционные и гравитационные свойства. Соответственно различают М. инертную и М. гравитационную (тяжёлую, тяготеющую).

Понятие М. было введено в механику И. Ньютоном. В классической механике Ньютона М. входит в определение импульса (количества движения (См. Количество движения)) тела: импульс p пропорционален скорости движения тела v ,

p = mv . (1)

Коэффициент пропорциональности - постоянная для данного тела величина m - и есть М. тела. Эквивалентное определение М. получается из уравнения движения классической механики

f = ma . (2)

Здесь М. - коэффициент пропорциональности между действующей на тело силой f и вызываемым ею ускорением тела a . Определённая соотношениями (1) и (2) М. называется инерциальной массой, или инертной массой; она характеризует динамические свойства тела, является мерой инерции тела: при постоянной силе чем больше М. тела, тем меньшее ускорение оно приобретает, то есть тем медленнее меняется состояние его движения (тем больше его инерция).

Действуя на различные тела одной и той же силой и измеряя их ускорения, можно определить отношения М. этих тел: m 1 : m 2 : m 3 ... = a 1 : a 2 : a 3 ...; если одну из М. принять за единицу измерения, можно найти М. остальных тел.

В теории гравитации Ньютона М. выступает в другой форме - как источник поля тяготения. Каждое тело создаёт поле тяготения, пропорциональное М. тела (и испытывает воздействие поля тяготения, создаваемого другими телами, сила которого также пропорциональна М. тел). Это поле вызывает притяжение любого другого тела к данному телу с силой, определяемой Ньютона законом тяготения (См.Ньютона закон тяготения):

где r - расстояние между телами, G - универсальная Гравитационная постоянная, a m 1 и m 2 - М. притягивающихся тел. Из формулы (3) легко получить формулу для Веса Р тела массы m в поле тяготения Земли:

Р = m · g . (4)

Здесь g = G · M / r 2 - ускорение свободного падения в гравитационном поле Земли, а r R - радиусу Земли. М., определяемая соотношениями (3) и (4), называется гравитационной массой тела.

Единицей М. в СГС системе единиц служит Грамм, а в Международной системе единиц (См. Международная система единиц) СИ - Килограмм. М. атомов и молекул обычно измеряется в атомных единицах массы (См. Атомные единицы массы). М. элементарных частиц принято выражать либо в единицах М. электрона m e , либо в энергетических единицах, указывая энергию покоя соответствующей частицы. Так, М. электрона составляет 0,511 Мэв , М. протона - 1836,1 m e , или 938,2 Мэв и т. д.

Природа М. - одна из важнейших нерешенных задач современной физики. Принято считать, что М. элементарной частицы определяется полями, которые с ней связаны (электромагнитным, ядерным и другими). Однако количественная теория М. ещё не создана. Не существует также теории, объясняющей, почему М. элементарных частиц образуют дискретный спектр значений, и тем более позволяющей определить этот спектр.

В астрофизике М. тела, создающего гравитационное поле, определяет так называемый Гравитационный радиус тела R гр = 2GM/c 2 . Вследствие гравитационного притяжения никакое излучение, в том числе световое, не может выйти наружу, за поверхность тела с радиусом R R гр. Звёзды таких размеров будут невидимы; поэтому их назвали «чёрными дырами (См. Чёрная дыра)». Такие небесные тела должны играть важную роль во Вселенной.

15) Сила

Силы в механике Сила тяготения Сила упругости Сила трения (сухого и жидкого) Природа взаимодействия Гравитационная Электромагнитная Электромагнитная Формула для расчета силы ; ; Зависимость силы от расстояния или относительной скорости Является функцией расстояния между взаимодействующими телами Является функцией скорости относительного движения Зависимость силы от массы взаимодействующих тел Прямопропорциональна массам взаимодействующих тел Не зависит Не зависит Направление вектора силы Вдоль прямой, соединящей взаимодействующие тела Противоположно направлению перемещения частиц при деформации Противоположно направлению вектора скорости V оm Сохранение значения силы при переходе из одной инерциальной системы отсчета в другую Сохраняет, так как расстояние Rне изменяется Сохраняет, так как деформация х не изменяется Сохраняет, так как модуль относительной скорости V оm не изменяется Условия применимости формулы Материальные точки или сферически симметричные шары Достаточно малая величина деформации Формула выполняется приближенно, так как сила сухого трения зависит от скорости. При жидком трении до определенной скорости выполняется формула , а затем

16) Законы Ньютона

I закон Ньютона

Существуют такие системы отсчета, которые называются инерциальными, относительно которых тела сохраняют свою скорость неизменной, если на них не действуют другие тела или действие других сил скомпенсированно.

II закон Ньютона

Ускорение тела прямопропорционально равнодействующей сил, приложенных к телу, и обратно пропорционально его массе:

III закон Ньютона

Силы, с которыми два тела действуют друг на друга, равны по модулю и противоположны по направлению.

17) Границы применимости законов Ньютона

До конца прошлого столетия никто не сомневался в абсолютной правильности законов Ньютона. Однако в XX в. выяснилось, что эти законы все-таки не абсолютно точны.

Ими нельзя пользоваться, когда тела движутся с очень большими скоростями, которые сравнимы со скоростью света. Альберт Эйнштейн, которого называют Ньютоном XX в., сумел сформулировать законы движения, справедливые и для движения со скоростями, близкими к скорости света.

Эти законы лежат в основе так называемой релятивистской механики или теории относительности. А законы Ньютона представляют собой следствие этих законов, когда скорости тел малы по сравнению со скоростью света.

Законы Ньютона нельзя применять и при рассмотрении движения внутриатомных частиц. Такие движения описываются законами квантовой механики, в которой классическая механика рассматривается как частный случай.

Законы сохранения импульса и энергии, выведенные из законов Ньютона, справедливы и в квантовой механике, и в теории относительности. Механика лежит в основе всего естествознания.

18) Сила трения

Сила, возникающая в месте соприкосновения тел и препятствующая их относительному переме­щению, называется силой трения . Направление силы трения противоположно направлению движения. Различают силу трения покоя и силу трения скольжения.

Если тело скользит по какой-либо поверхности, его движению препятствует сила трения скольжения.

, где N - сила реакции опоры, a μ - коэффициент трения скольжения. Коэф­фициент μ зависит от материала и качества обработки соприкасающихся поверхностей и не зависит от веса тела. Коэффициент трения определяется опытным путем.

Сила трения скольжения всегда направлена противоположно движению тела. При изменении на­правления скорости изменяется и направление си­лы трения.

Сила трения начинает действовать на тело, когда его пытаются сдвинуть с места. Если внешняя сила F меньше произведения μN, то тело не будет сдвигаться - началу движения, как принято гово­рить, мешает сила трения покоя. Тело начнет дви­жение только тогда, когда внешняя сила F превы­сит максимальное значение, которое может иметь сила трения покоя

Трение покоя – сила трения, препятствующая возникновению движению одного тела по поверхности другого.

В некоторых случаях трение полезно (без трения невозможно было бы ходить по земле человеку, жи­вотным, двигаться автомобилям, поездам и т.д.), в таких случаях трение усиливают. Но в других слу­чаях трение вредно. Например, из-за него изнаши­ваются трущиеся детали механизмов, расходуется лишнее горючее на транспорте и т.д. Тогда с трением борются, применяя смазку («жидкостную или воздушную подушку») или заменяя скольжение на качение (поскольку трение качения характеризует­ся значительно меньшими силами, нежели трение скольжения).

Силы трения, в отличие от гравитационных сил и сил упругости, не зависят от координат относительного расположения тел, они могут зависеть от скорости относительного движения соприкасающихся тел. Силы трения являются непотенциальными силами.

Сила трения покоя (υ = 0).

19) Сила упругости

Сила, возникающая в результате деформации тела и направленная в сторону, противоположную перемещению частиц тела при деформации, называется силой упругости.

В элементарном курсе физики рассматриваются деформации растяжения или сжатия. В этих случаях силы упругости направлены вдоль линии действия внешней силы, т.е. вдоль осей продольно деформируемых нитей, пружин, стержней и т. п., или перпендикулярно к поверхностям соприкасающихся тел.

Деформацию растяжения или сжатия характе­ризует абсолютное удлинение: где х 0 - первоначальная длина образца, х - его дли­на в деформированном состоянии. Относительным удлинением тела называют отношение .

Сила упругости, действующая на тело со стороны опоры или подвеса, называется силой реакции опоры (подвеса) или силой натяжения подвеса .

Закон Гука: Сила упругости, возникающая в теле при его деформации растяжения или сжатия , пропорциональна абсолютному удлинению тела и направлена противоположно направлению перемещения частиц тела относительно других частиц при деформации:

Здесь х – удлинение тела (пружины) (м). Удлинение положительно при растяжении тела и отрицательно при сжатии.

Коэффициент пропорциональности k называет­ся жесткостью тела, он зависит от материала, из которого тело изготовлено, а также от его геоме­трических размеров и формы. Жесткость выражается в ньютонах на метр (Н/м).

Сила упругости зависит только от изменения расстояний между взаимодействующими частями данного упругого тела. Работа силы упругости не зависит от формы траек­тории и при перемещении по замкнутой траектории равна нулю. Поэтому силы упругости является потенциальными силами.

20) Гравитационная сила

Гравита́ция (всемирное тяготение, тяготение) -фундаментальное взаимодействие в природе, которому подвержены все тела, имеющие массу. Главным образом, гравитация действует в масштабах космоса. Термингравитация используется также как название раздела в физике, изучающего гравитационное взаимодействие.

Гравитационная постоянная

Из (2.26) при m 1 =m 2 =m имеем

Из этой формулы видно, что гравитационная постоянная численно равна силе взаимного тяготения двух материальных точек, имеющих массы, равные единице массы, и находящихся друг от друга на расстоянии, равном единице длины.
Числовое значение гравитационной постоянной устанавливают экспериментально. Впервые это сделал английский ученый Кэвендиш с помощью крутильного динамометра (крутильных весов).

В СИ гравитационная постоянная имеет значение

G = 6,67·10 -11 Нм 2 /кг 2 .

Следовательно, две материальные точки массой 1 кг каждая, находящиеся друг от друга на расстоянии 1 м, взаимно притягиваются гравитационной силой, равной 6,67·10 -11 Н.

21) Закон всемирного тяготения

В 1687 г. Ньютон установил один из фундаментальных законов механики, получивший название закона всемирного тяготения : любые две материальные частицы притягиваются друг к другу с силой, пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними.
Эту силу называют силой тяготения (или гравитационной силой).

Масса – это свойство тела, характеризующее его инертность. При одинаковом воздействии со стороны окружающих тел одно тело может быстро изменять свою скорость, а другое в тех же условиях – значительно медленнее. Принято говорить, что второе из этих двух тел обладает большей инертностью, или, другими словами, второе тело обладает большей массой.

Если два тела взаимодействуют друг с другом, то в результате изменяется скорость обоих тел, т. е. в процессе взаимодействия оба тела приобретают ускорения. Отношение ускорений двух данных тел оказывается постоянным при любых воздействиях. В физике принято, что массы взаимодействующих тел обратно пропорциональны ускорениям, приобретаемым телами в результате их взаимодействия.

Сила – это количественная мера взаимодействия тел. Сила является причиной изменения скорости тела. В механике Ньютона силы могут иметь различную физическую природу: сила трения, сила тяжести, упругая сила и т. д. Сила является векторной величиной . Векторная сумма всех сил, действующих на тело, называетсяравнодействующей силой .

Для измерения сил необходимо установить эталон силы и способ сравнения других сил с этим эталоном.

В качестве эталона силы можно взять пружину, растянутую до некоторой заданной длины. Модуль силы F 0 , с которой эта пружина при фиксированном растяжении действует на прикрепленное к ее концу тело, называют эталоном силы . Способ сравнения других сил с эталоном состоит в следующем: если тело под действием измеряемой силы и эталонной силы остается в покое (или движется равномерно и прямолинейно), то силы равны по модулю F = F 0 (рис. 1.7.3).

Если измеряемая сила F больше (по модулю) эталонной силы, то можно соединить две эталонные пружины параллельно (рис. 1.7.4). В этом случае измеряемая сила равна 2F 0 . Аналогично могут быть измерены силы 3F 0 , 4F 0 и т. д.

Измерение сил, меньших 2F 0 , может быть выполнено по схеме, показанной на рис. 1.7.5.

Эталонная сила в Международной системе единиц называется ньютон (Н).

Сила в 1 Н сообщает телу массой 1 кг ускорение 1 м/с 2

На практике нет необходимости все измеряемые силы сравнивать с эталоном. Для измерения сил используют пружины, откалиброванные описанным выше способом. Такие откалиброванные пружины называются динамометрами . Сила измеряется по растяжению динамометра (рис. 1.7.6).

Законы механики Ньютона - три закона, лежащие в основе т. н. классической механики. Сформулированы И. Ньютоном (1687). Первый закон: “Всякое тело продолжает удерживаться в своём состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние”. Второй закон: “Изменение количества движения пропорционально приложенной движущей силе и происходит по направлению той прямой, по которой эта сила действует”. Третий закон: “Действию всегда есть равное и противоположное противодействие, иначе, взаимодействия двух тел друг на друга между собой равны и направлены в противоположные стороны”. 1.1. Зако́н ине́рции (Первый закон Нью́тона) : свободное тело, на которое не действуют силы со стороны других тел, находится в состоянии покоя или равномерного прямолинейного движения (понятие скорости здесь применяется к центру масс тела в случае непоступательного движения). Иными словами, телам свойственна ине́рция (от лат. inertia - “бездеятельность”, “косность”), то есть явление сохранения скорости, если внешние воздействия на них скомпенсированы. Системы отсчёта, в которых выполняется закон инерции, называются инерциальными системами отсчёта (ИСО). Впервые закон инерции был сформулирован Галилео Галилеем, который после множества опытов заключил, что для движения свободного тела с постоянной скоростью не нужно какой-либо внешней причины. До этого общепринятой была иная точка зрения (восходящая к Аристотелю): свободное тело находится в состоянии покоя, а для движения с постоянной скоростью необходимо приложение постоянной силы. Впоследствии Ньютон сформулировал закон инерции в качестве первого из трёх своих знаменитых законов. Принцип относительности Галилея: во всех инерциальных системах отсчета все физические процессы протекают одинаково. В системе отсчета, приведенной в состояние покоя или равномерного прямолинейного движения относительно инерциальной системы отсчета (условно - “покоящейся”) все процессы протекают точно так же, как и в покоящейся системе. Следует отметить что понятие инерциальной системы отсчета - абстрактная модель (некий идеальный объект рассматриваемый вместо реального объекта. Примерами абстрактной модели служат абсолютно твердое тело или невесомая нить), реальные системы отсчета всегда связаны с каким-либо объектом и соответствие реально наблюдаемого движения тел в таких системах с результатами расчетов будет неполным. 1.2 Закон движения - математическая формулировка того, как движется тело или как происходит движение более общего вида. В классической механике материальной точки закон движения представляет собой три зависимости трёх пространственных координат от времени, либо зависимость одной векторной величины (радиус-вектора) от времени, вида. Закон движения может быть найден, в зависимости от задачи, либо из дифференциальных законов механики, либо из интегральных. Закон сохранения энергии - основной закон природы, заключающийся в том, что энергия замкнутой системы сохраняется во времени. Другими словами, энергия не может возникнуть из ничего и не может в никуда исчезнуть, она может только переходить из одной формы в другую. Закон сохранения энергии встречается в различных разделах физики и проявляется в сохранении различных видов энергии. Например, в классической механике закон проявляется в сохранении механической энергии (суммы потенциальной и кинетической энергий). В термодинамике закон сохранения энергии называется первым началом термодинамики и говорит о сохранении энергии в сумме с тепловой энергией. Поскольку закон сохранения энергии относится не к конкретным величинам и явлениям, а отражает общую, применимую везде и всегда, закономерность, то правильнее называть его не законом, а принципом сохранения энергии. Частный случай - Закон сохранения механической энергии - механическая энергия консервативной механической системы сохраняется во времени. Проще говоря, при отсутствии сил типа трения (диссипативных сил) механическая энергия не возникает из ничего и не может никуда исчезнуть. Ек1+Еп1=Ек2+Еп2 Закон сохранения энергии - это интегральный закон. Это значит, что он складывается из действия дифференциальных законов и является свойством их совокупного действия. Например, иногда говорят, что невозможность создать вечный двигатель обусловлена законом сохранения энергии. Но это не так. На самом деле, в каждом проекте вечного двигателя срабатывает один из дифференциальных законов и именно он делает двигатель неработоспособным. Закон сохранения энергии просто обобщает этот факт. Согласно теореме Нётер, закон сохранения механической энергии является следствием однородности времени. 1.3. Зако́н сохране́ния и́мпульса (Зако́н сохране́ния коли́чества движения 2й закон Ньютона) утверждает, что сумма импульсов всех тел (или частиц) замкнутой системы есть величина постоянная. Из законов Ньютона можно показать, что при движении в пустом пространстве импульс сохраняется во времени, а при наличии взаимодействия скорость его изменения определяется суммой приложенных сил. В классической механике закон сохранения импульса обычно выводится как следствие законов Ньютона. Однако этот закон сохранения верен и в случаях, когда ньютоновская механика неприменима (релятивистская физика, квантовая механика). Как и любой из законов сохранения, закон сохранения импульса описывает одну из фундаментальных симметрий, - однородность пространства Третий закон Ньютона объясняет, что происходит с двумя взаимодействующими телами. Возьмём для примера замкнутую систему, состоящую из двух тел. Первое тело может действовать на второе с некоторой силой F12, а второе - на первое с силой F21. Как соотносятся силы? Третий закон Ньютона утверждает: сила действия равна по модулю и противоположна по направлению силе противодействия. Подчеркнём, что эти силы приложены к разным телам, а потому вовсе не компенсируются. Сам закон: Тела действуют друг на друга с силами, направленными вдоль одной и той же прямой, равными по модулю и противоположными по направлению: . 1.4. Силы инерции Законы Ньютона, строго говоря, справедливы только в инерциальных системах отсчета. Если мы честно запишем уравнение движения тела в неинерциальной системе отсчета, то оно будет по виду отличаться от второго закона Ньютона. Однако часто, для упрощения рассмотрения, вводят некую фиктивную “силу инерции”, и тогда эти уравнения движения переписываются в виде, очень похожем на второй закон Ньютона. Математически здесь всё корректно (правильно), но с точки зрения физики новую фиктивную силу нельзя рассматривать как нечто реальное, как результат некоторого реального взаимодействия. Ещё раз подчеркнём: “сила инерции” - это лишь удобная параметризация того, как отличаются законы движения в инерциальной и неинерциальной системах отсчета. 1.5. Закон вязкости Закон вязкости (внутреннего трения) Ньютона - математическое выражение, связывающее напряжение внутреннего трения τ (вязкость) и изменение скорости среды v в пространстве (скорость деформации) для текучих тел (жидкостей и газов): где величина η называется коэффициентом внутреннего трения или динамическим коэффициентом вязкости (единица СГС - пуаз). Кинематическим коэффициентом вязкости называется величина μ = η / ρ (единица СГС - Стокс, ρ − плотность среды). Закон Ньютона может быть получен аналитически приемами физической кинетики, где вязкость рассматривается обычно одновременно с теплопроводностью и соответсвующим законом Фурье для теплопроводности. В кинетической теории газов коэффициент внутреннего трения вычисляется по формуле где < u > - средняя скорость теплового движения молекул, λ − средняя длина свободного пробега.

Когда мы говорим о перемещении, важно помнить, что перемещение зависит от системы отсчета, в которой рассматривается движение. Обратите внимание на рисунок.

Рис. 4. Определение модуля перемещения тела

Тело движется в плоскости XOY. Точка А – начальное положение тела. Ее координаты А(х 1 ; у 1). Тело перемещается в точку В (х 2 ; у 2). Вектор – это будет перемещение тела:

Урок 3. Определение координаты движущегося тела

Ерюткин Евгений Сергеевич

Тема урока – «Определение координаты движущегося тела». Мы уже обсуждали характеристики движения: пройденный путь, скорость и перемещение. Главной характеристикой движения является местоположение тел. Чтобы его характеризовать, необходимо использовать понятие «перемещение», именно оно дает возможность определить местоположение тела в любой момент времени, именно в этом и состоит главная задача механики.

.

Рис. 1. Путь как сумма множества прямолинейных перемещений

Траектория как сумма перемещений

На рис. 1 представлена траектория движения тела из точки А в точку В в виде кривой линии, которую можем представить как набор малых перемещений.Перемещение – это вектор, следовательно, весь пройденный путь мы можем представить как набор сумм очень малых перемещений вдоль кривой. Каждое из малых перемещений – это прямая линия, все вместе они составят всю траекторию. Обратите внимание:- именно перемещение определяет положение тела. Любое перемещение мы должны рассматривать в определенной системе отсчета.

Координаты тела

Рисунок надо совместить с системой отсчета движения тел. Самый простой из рассматриваемых нами способов – это движение по прямой, вдоль одной оси. Для характеристики перемещений будем использовать способ, связанный с системой отсчета – с одной линией; движение прямолинейное.

Рис. 2. Одномерное движение

На рис. 2 представлена ось ОХ и случай одномерного движения, т.е. тело движется вдоль прямой, вдоль одной оси. В данном случае тело переместилось из точки А в точку В, перемещение составил вектор АВ. Для определения координаты точки А мы должны сделать следующее: опустить перпендикуляр на ось, координата точки А на этой оси будет обозначаться Х 1 , а опустив перпендикуляр из точки В, получим координату конечной точки – Х 2 . Выполнив это, можно говорить о проекции вектора на ось ОХ. При решении задач нам будет нужна проекция вектора, скалярная величина.

Проекция вектора на ось

В первом случае вектор направлен вдоль оси ОХ, совпадает по направлению, поэтому проекция будет со знаком плюс.

Рис. 3. Проекция перемещения

со знаком минус

Пример отрицательной проекции

На рис. 3 изображена еще одна возможная ситуация. Вектор АВ в данном случае направлен против выбранной оси. В этом случае проекция вектора на ось будет иметь отрицательное значение. При вычислении проекции обязательно ставится символ вектора S, а внизу – индекс Х: S x .

Путь и перемещение при прямолинейном движении

Прямолинейное движение является простым видом движения. В данном случае можно говорить, что модуль проекции вектора – это и будет пройденный путь. Следует обратить внимание, что в данном случае длина модуля вектора равна пройденному пути.

Рис. 4. Пройденный путь совпадает

с проекцией перемещения

Примеры различной взаимной ориентации оси и перемещения

Чтобы окончательно разобраться с вопросом проекции вектора на ось и с координатами, рассмотрим несколько примеров:

Рис. 5. Пример 1

Пример 1.Модуль перемещения равен проекции перемещения и определяется как Х 2 – Х 1, т.е. из конечной координаты вычитаем начальную.

Рис. 6. Пример 2

Пример 2. Очень любопытен второй рисунок под буквой Б. Если тело движется перпендикулярно выбранной оси, то координата тела на этой оси не изменяется, и в этом случае модуль перемещения по этой оси равен 0.

Рис 7. Пример 3

Пример 3. Если тело движется под углом к оси ОХ, то, определяя проекцию вектора на ось ОХ, видно, что проекция по своему значению будет меньше, чем сам модуль вектора S. Путем вычитания Х 2 – Х 1 , определяем скалярное значение проекции.

Решение задачи на определение пути и перемещения

Рассмотрим задачу. Определить местоположение моторной лодки. Лодка отошла от пристани и прошла вдоль берега прямолинейно и равномерно сначала 5 км, а затем в обратном направлении еще 3 км. Необходимо определить пройденный путь и модуль вектора перемещения.

Тема: Законы взаимодействия и движения тел

Урок 4. Перемещение при прямолинейном равномерном движении

Ерюткин Евгений Сергеевич

Равномерное прямолинейное движение

Для начала, давайте вспомним определение равномерного движения . Определение: равномерным движением называется такое движение, при котором тело за любые равные промежутки времени проходит одинаковые расстояния.

Необходимо отметить то, что равномерным может быть не только прямолинейное, но и криволинейное движение. Сейчас мы рассмотрим один частный случай – движение вдоль прямой. Итак, равномерное прямолинейное движение (РПД) – движение, при котором тело движется вдоль прямой и за любые равные промежутки времени совершает одинаковые перемещения.

Скорость

Важная характеристика такого движения – скорость . Из 7 класса вам известно, что скорость – это физическая величина, которая характеризует быстроту движения. При равномерном прямолинейном движении скорость – величина постоянная. Скорость величина векторная, обозначается , единицей измерения скорости является м/с.

Рис. 1. Знак проекции скорости

в зависимости от ее направления

Обратите внимание на рис. 1. Если вектор скорости направлен по направлению оси, то тогда проекция скорости будет . Если скорость направлена против выбранной оси, то проекция этого вектора будет отрицательной.

Определение скорости, пути и перемещения

Перейдем к формуле для расчета скорости . Скорость определяется как отношение перемещения ко времени, в течение которого это перемещение произошло: .

Обращаем ваше внимание на то, что при прямолинейном движении длина вектора перемещения равна пути пройденному этим телом. Поэтому мы можем сказать, что модуль перемещения равен пройденному пути. Чаще всего вы эту формулу встречали в 7 классе и в математике. Она записывается просто: S = V * t. Но важно понимать, что это лишь частный случай.

Уравнение движения

Если вспомнить, что проекция вектора определяется как разность конечной координаты и начальной координаты, т.е. S x = х 2 – х 1 , то можно получить закон движения при прямолинейном равномерном движении.

График скорости

Обратите внимание, что проекция скорости может быть как отрицательной, так и положительной, поэтому здесь ставится плюс или минус, в зависимости от направления скорости относительно выбранной оси.

Рис. 2. График зависимости проекции скорости от времени для РПД

График зависимости проекции скорости от времени, представленный выше, непосредственная характеристика равномерного движения. По горизонтальной оси откладывается время, по вертикальной оси – скорость. Если график проекции скорости располагается над осью абсцисс, то это означает, что тело будет двигаться вдоль оси Ох, в положительном направлении. В противоположном случае направление движения не совпадает с направлением оси.

Геометрическое толкование пути

Рис. 3. Геометрический смысл графика скорости от времени

Тема: Законы взаимодействия и движения тел

Урок 5. Прямолинейное равноускоренное движение. Ускорение

Ерюткин Евгений Сергеевич

Тема урока «Неравномерное прямолинейное движение, прямолинейное равноускоренное движение». Для описания такого движения мы введем важную величину – ускорение . Напомним, что на предыдущих занятиях мы обсуждали вопрос о прямолинейном равномерном движении, т.е. таком движении, когда скорость остается величиной постоянной.

Неравномерное движение

А если скорость изменяется, что тогда? В этом случае говорят о том, что движение неравномерное.

Мгновенная скорость

Для характеристики неравномерного движения вводится новая физическая величина – мгновенная скорость .

Определение: мгновенная скорость – это скорость тела в данный момент или в данной точке траектории.

Прибор, который показывает мгновенную скорость, есть на любом движущемся средстве: в автомобиле, поезде и т.д. Это прибор, который называется спидометр (от англ. – speed («скорость»)). Обращаем ваше внимание на то, что мгновенная скорость определяется как отношение перемещения ко времени, в течение которого это перемещение произошло. Но ведь это определение ничем не отличается от данного нами ранее определения скорости при РПД. Для более точного определения необходимо отметить, что промежуток времени и соответствующее ему перемещение берутся очень маленькими, стремящимися к нулю. Тогда скорость не успевает поменяться сильно, и мы можем пользоваться формулой, которую вводили ранее: .

Обратите внимание на рис. 1. х 0 и х 1 – это координаты вектора перемещения. Если этот вектор будет очень маленьким, то и изменение скорости произойдет достаточно быстро. Это изменение в данном случае мы характеризуем изменением мгновенной скорости.

Рис. 1. К вопросу об определении мгновенной скорости

Ускорение

Таким образом, неравномерное движение имеет смысл характеризовать изменением скорости от точки к точке, тем, как быстро это происходит. Это изменение скорости характеризуется величиной, которая называется ускорение. Обозначается ускорение , это векторная величина.

Определение: ускорение определяется как отношение изменения скорости ко времени, в течение которого это изменение произошло.

Ускорение измеряется м/с 2 .

По сути, скорость изменения скорости – это есть ускорение. Значение проекции ускорения, поскольку это вектор, может быть отрицательным и положительным.

Важно отметить, что, куда направлено изменение скорости, туда будет направлено ускорение. Особое значение это приобретает при криволинейном движении, когда изменяется значение.

Тема: Законы взаимодействия и движения тел

Урок 6. Скорость прямолинейного равноускоренного движения. График скорости

Ерюткин Евгений Сергеевич

Ускорение

Вспомним, что такое ускорение. Ускорение – это физическая величина, которая характеризует изменение скорости за определенный промежуток времени. ,

то есть ускорение – это величина, которая определяется изменением скорости за время, в течении которого это изменение произошло.

Уравнение скорости

Воспользовавшись уравнением, определяющим ускорение, удобно записать формулу для вычисления мгновенной скорости любого промежутка и для любого момента времени:

Это уравнение даёт возможность определить скорость в любой момент движения тела. При работе с законом изменения скорости от времени необходимо учитывать направление скорости по отношению к выбранной СО.

График скорости

График скорости (проекции скорости) представляет собой закон изменения скорости (проекции скорости) от времени для равноускоренного прямолинейного движения, представленный графически.

Рис. 1. Графики зависимости проекции скорости от времени для равноускоренного прямолинейного движения

Проанализируем различные графики.

Первый. Уравнение проекции скорости: . Скорость и время увеличиваются, обратите внимание, что на графике в том месте, где одна из осей – время, а другая – скорость, будет прямая линия. Начинается эта линия из точки , которая характеризует начальную скорость.

Второй – это зависимость при отрицательном значении проекции ускорения, когда движение замедленно, то есть скорость по модулю сначала уменьшается. В этом случае уравнение выглядит: .

График начинается в точке продолжается до точки , пересечения оси времени. В этой точке скорость тела становится равной нулю. Это означает, что тело остановилось.

Если вы внимательно посмотрите на уравнение скорости, то вспомните, что в математике была похожая функция. Это уравнение прямой, что подтверждается графиками, рассмотренными нами.

Некоторые частные случаи

Чтобы окончательно разобраться с графиком скорости рассмотрим частный случай. На первом графике зависимость скорости от времени связана с тем, что начальная скорость, , равняется нулю, проекция ускорения больше нуля.

Запись этого уравнения . Ну и сам вид графика достаточно простой (график 1):

Рис. 2. Различные случаи равноускоренного движения

Еще два случая равноускоренного движения представлены на следующих двух графиках. Второй случай – это ситуация, когда сначала тело двигалось с отрицательной проекцией ускорения, а затем начало разгоняться в положительном направлении оси ОХ.

Третий случай – это ситуация, когда проекция ускорения меньше нуля и тело непрерывно движется в направлении, противоположном положительному направлению оси ОХ. При этом модуль скорости постоянно возрастает, тело ускоряется.

Данный видеоурок поможет пользователям получить представление о теме «Перемещение при прямолинейном равноускоренном движении». В ходе этого занятия учащиеся смогут расширить свои знания о прямолинейном равноускоренном движении. Учитель расскажет, как правильно определять перемещение, координаты и скорость при таком движении.

Тема: Законы взаимодействия и движения тел

Урок 7.Перемещение при прямолинейном равноускоренном движении

Ерюткин Евгений Сергеевич

На предыдущих уроках мы обсуждали, как определить пройденный путь при равномерном прямолинейном движении. Настало время узнать, как определить координату тела, пройденный путь и перемещение при . Это можно сделать, если рассмотреть прямолинейное равноускоренное движение как набор большого количества очень малых равномерных перемещений тела.

Опыт Галилея

Первым решил задачу местоположения тела в определённый момент времени при ускоренном движении итальянский учёный Галилео Галилей. Свои опыты он проводил с наклонной плоскостью. По желобу он запускал шар, мушкетную пулю, а затем определял ускорение этого тела. Как же он это делал? Он знал длину наклонной плоскости, а время определял по биению своего сердца или по пульсу.

Определение перемещения по графику скорости

Рассмотрим график зависимости скорости равноускоренного прямолинейного движения от времени. Эта зависимость вам известна, она представляет собой прямую линию: v = v 0 + at

Рис.1. Определение перемещения

при равноускоренном прямолинейном движении

График скорости разбиваем на маленькие прямоугольные участки. Каждый участок будет соответствовать определённой постоянной скорости. Надо определить пройденный путь за первый промежуток времени. Запишем формулу: .

Теперь посчитаем суммарную площадь всех имеющихся у нас фигур. А сумма площадей при равномерном движении – это полный пройденный путь.

Обратите внимание, от точки к точке скорость будет изменяться, тем самым мы получим путь, пройденный телом именно при прямолинейном равноускоренном движении.

Заметим, что при прямолинейном равноускоренном движении тела, когда скорость и ускорение направлены в одну сторону, модуль перемещения равен пройденному пути, поэтому, когда мы определяем модуль перемещения – определяемпройденный путь . В данном случае можем говорить, что модуль перемещения будет равен площади фигуры, ограниченной графиком скорости и времени.

Воспользуемся математическими формулами для вычисления площади указанной фигуры.

Площадь фигуры, (численно равная пройденному пути), равна полусумме оснований, умноженной на высоту. Обратите внимание, что на рисунке одним из оснований является начальная скорость. А вторым основанием трапеции будет конечная скорость, обозначенная буквой , умноженная на . Это означает, что высота трапеции , это промежуток времени, за которое произошло движение.

Конечную скорость, рассмотренную на предыдущем уроке, мы можем записать как сумму начальной скорости и вклада, обусловленного наличием у тела постоянного ускорения. Получается выражение:

Если открыть скобки, то становится удвоенным. Мы можем записать следующее выражение:

Если по отдельности записать каждое из этих выражений, итогом будет следующее:

Это уравнение впервые было получено благодаря экспериментам Галилео Галилея. Поэтому можно считать, что именно этот ученый впервые дал возможность определить местоположение тела в любой момент. Это и есть решение главной задачи механики.

Определение координаты тела

Теперь давайте вспомним, что пройденный путь, равный в нашем случае модулю перемещения , выражается разностью:

Если в уравнение Галилея подставить полученное нами выражение для S, то запишем закон, по которому движется тело при прямолинейном равноускоренном движении:

Следует помнить, что скорость, ее проекция и ускорение могут быть отрицательными.

Следующим этапом рассмотрения движения станет исследование движения по криволинейной траектории.

Тема: Законы взаимодействия и движения тел

Урок 8. Перемещение тела при прямолинейном равноускоренном движении без начальной скорости

Ерюткин Евгений Сергеевич

Прямолинейное равноускоренное движение

Рассмотрим некоторые особенности перемещения тела при прямолинейном равноускоренном движении без начальной скорости. Уравнение, которое описывает это движение, было выведено Галилеем в XVI веке. Необходимо помнить, что при прямолинейном равномерном или неравномерном движении модуль перемещения совпадает по своему значению с пройденным путем. Формула выглядит следующим образом:

S=V o t + ­­­­­at 2 /2,

где а – это ускорение.

Случай равномерного движения

Первый, самый простой случай, это ситуация, когда ускорение равно нулю. Это означает, что уравнение, приведенное выше, превратится в уравнение: S = V 0 t. Это уравнение дает возможность найти пройденный путь равномерного движения. S, в данном случае, является модулем вектора. Его можно определить как разность координат: конечная координата х минус начальная координата х 0 . Если подставить это выражение в формулу, то получается зависимость координаты от времени.

Случай движения без начальной скорости

Рассмотрим вторую ситуацию. При V 0 = 0 начальная скорость равна 0, это значит, что движение начинается из состояния покоя. Тело покоилось, затем начинает приобретать и увеличивать скорость. Движение из состояния покоя будет записываться без начальной скорости: S = at 2 /2. Если S – модуль перемещения (или пройденный путь) обозначить как разность начальной и конечной координаты (из конечной координаты вычитаем начальную), то получится уравнение движения, которое дает возможность определить координату тела для любого момента времени: х = х 0 + at 2 /2.

Проекция ускорения может быть, как отрицательной, так и положительной, поэтому можно говорить о координате тела, которая может как увеличиваться, так и уменьшаться.

Пропорциональность пути квадрату времени

Важные закономерности уравнений без начальной скорости, т.е. когда тело начинает свое движение из состояния покоя:

S x – пройденный путь, он пропорционален t 2 , т.е. квадрату времени. Если рассматривать равные промежутки времени – t 1 , 2t 1 , 3t 1 , то можно заметить следующие соотношения:

S 1 ~ 1 S 1 = a/2*t 1 2

S 2 ~ 4 S 2 = a/2*(2t 1) 2

S 3 ~ 9 S 3 = a/2*(3t 1) 2

Если продолжить, закономерность сохранится.

Перемещения за последовательные промежутки времени

Можно сделать следующее заключение: пройденные расстояния увеличиваются пропорционально квадрату увеличения промежутков времени. Если был один промежуток времени, например 1 с, значит, пройденный путь будет пропорционален 1 2 . Если второй отрезок 2 с, то пройденное расстояние будет пропорционально 2 2 , т.е. = 4.

Если за единицу времени выбираем некий промежуток, то полные расстояния, пройденные телом за последующие равные промежутки времени, будут относиться как квадраты целых чисел.

Иными словами, перемещения, совершенные телом за каждую последующую секунду, будут относиться как нечетные числа:

S 1:S 2:S 3:…:S n =1:3:5:…:(2n-1)

Рис. 1. Перемещения

за каждую секунду относятся как нечетные числа

Рассмотренные закономерности на примере задачи

Исследованные два очень важных заключения свойственны только прямолинейному равноускоренному движению без начальной скорости.

Задача: автомобиль начинает двигаться от остановки, т.е. из состояния покоя, и за 4 с своего движения проходит 7 м. Определите ускорение тела и мгновенную скорость через 6 с после начала движения.

Рис. 2. Решение задачи

Решение: автомобиль начинает движение из состояния покоя, следовательно, путь, который проходит автомобиль, рассчитывается по формуле: S = at 2 /2. Мгновенная скорость определяется как V = at. S 4 = 7 м, расстояние, которое автомобиль прошел за 4 с своего движения. Его можно выразить как разность полного пути, пройденного телом за 4 с, и пути, пройденного телом за 3 с. Используя это, получаем ускорение а = 2 м/с 2 , т.е. движение ускоренное, прямолинейное. Чтобы определить мгновенную скорость, т.е. скорость в конце 6 с, следует ускорение умножить на время, т.е. на 6 с, во время которых тело которое продолжало двигаться. Получаем скорость v(6с) = 12 м/с.

Ответ: модуль ускорения равен 2 м/с 2 ; мгновенная скорость в конце 6 с равна 12 м/с.

Тема: Законы взаимодействия и движения тел

Урок 9: Лабораторная работа №1 «Исследование равноускоренного движения

без начальной скорости»

Ерюткин Евгений Сергеевич

Цель работы

Цель лабораторной работы – определить ускорение движения тела, а также его мгновенную скорость в конце движения.

Впервые данную лабораторную работу проводил Галилео Галилей. Именно благодаря данной работе Галилею удалось установить опытным путём ускорение свободного падения.

Наша задача – рассмотреть и разобрать, как можно определить ускорение при движении тела по наклонному жёлобу.

Оборудование

Оборудование: штатив с муфтой и лапкой, в лапке укреплён наклонный жёлоб; в жёлобе располагается упор в виде металлического цилиндра. Движущееся тело – это шарик. Счётчик времени – метроном, если его запустить, он будет считать время. Измерительная лента понадобится для измерения расстояния.

Рис. 1. Штатив с муфтой и лапкой, желоб и шарик

Рис. 2. Метроном, цилиндрический упор

Таблица измерений

Составим таблицу, состоящую из пяти столбцов, каждый из которых необходимо заполнить.

Первый столбец – это число ударов метронома, который используется нами как счетчик времени. S – следующий столбец – это расстояние, которое проходит тело, шарик, скатывающийся по наклонному жёлобу. Далее – время движения. Четвёртый столбец – это вычисленное ускорение движения. В последнем столбце – мгновенная скорость в конце движения шарика.

Необходимые формулы

Для получения результата следует воспользоваться формулами: S = at 2 /2.

Отсюда несложно получить, что ускорение будет равно отношению удвоенного расстояния, делённого на квадрат времени: a = 2S/t 2 .

Мгновенная скорость определяется как произведение ускорения на время движения, т.е. промежутка времени от начала движения до того момента, как шарик столкнётся с цилиндром: V = at.

Проведение эксперимента

Перейдём к самому эксперименту. Для его выполнения следует отрегулировать метроном так, чтобы он совершал в одну минуту 120 ударов. Тогда между двумя ударами метронома будет промежуток времени, равный 0,5 с (полсекунды). Запускаем метроном и следим за тем, как он отсчитывает время.

Далее при помощи измерительной ленты определяем расстояние между цилиндром, который составляет упор, и начальной точкой движения. Оно равно 1,5 м. Расстояние выбрано так, чтобы тело, скатывающееся по жёлобу, уложилось в промежуток времени не менее 4 ударов метронома.

Рис. 3. Постановка опыта

Опыт: шарик, который ставим в начало движения и отпускаем с одним из ударов, дает результат – 4 удара.

Заполнение таблицы

Результаты записываем в таблицу и переходим к вычислениям.

В первый столбец внесли цифру 3. Но ударов метронома было 4?! Первый удар соответствует нулевой отметке, т.е. мы начинаем отсчёт времени, поэтому время движения шарика – это промежутки между ударами, а их всего три.

Длина пройденного пути , т.е. длина наклонной плоскости – 1,5 м. Подставляя эти значения в уравнение, получаем ускорение, равное приблизительно 1,33 м/с 2 . Обращаем ваше внимание, что это приближённое вычисление, с точностью до второго знака после запятой.

Мгновенная скорость в момент удара равна приблизительно 1,995 м/с.

Итак, мы выяснили, каким образом можно определить ускорение движущегося тела. Обращаем ваше внимание на то, что в своих опытах Галилео Галилей проводил определение ускорения, меняя угол наклона плоскости. Предлагаем вам самостоятельно проанализировать источники погрешностей при выполнении данной работы и сделать выводы.

Тема: Законы взаимодействия и движения тел

Урок 10. Решение задач на определение ускорения, мгновенной скорости и перемещения при равноускоренном прямолинейном движении

Ерюткин Евгений Сергеевич

Занятие посвящено решению задач на определение ускорения, мгновенной скорости и перемещения движущего тела.

Задача на определение пути и перемещения

Задача 1 посвящена исследованию пути и перемещения.

Условие: тело движется по окружности, проходя ее половину. Необходимо определить отношение пройденного пути к модулю перемещения.

Обратите внимание: дано условие задачи, но нет ни одного числа. Такие задачи будут встречаться в курсе физики довольно часто.

Рис. 1. Путь и перемещение тела

Введем обозначения. Радиус окружности, по которой движется тело, равен R. При решении задачи удобно сделать рисунок, на котором окружность и произвольную точку, из которой движется тело, обозначим А; тело движется в точку В, а S – это половина окружности, S – это перемещение , соединяющее начальную точку движения с конечной.

Несмотря на то, что в задаче ни одного числа нет, тем не менее, в ответе мы получаем вполне определенное число (1,57).

Задача на график скорости

Задача 2 будет посвящена графикам скорости.

Условие: два поезда движутся навстречу друг другу по параллельным путям, скорость первого поезда – 60 км/ч, скорость второго – 40 км/ч. Ниже представлены 4 графика, и нужно выбрать те, на которых правильно изображены графики проекции скорости движения этих поездов.

Рис. 2. К условию задачи 2

Рис. 3. Графики

к задаче 2

Ось скорости – вертикальная (км/ч), а ось времени – горизонтальная (время в ч).

На 1-м графике две параллельные прямые, это модули скорости движения тела – 60 км/ч и 40 км/ч. Если вы посмотрите на нижний график, под номером 2, то увидите то же самое, только в отрицательной области: -60 и -40. На двух других графиках 60 сверху и -40 снизу. На 4-м графике 40 в верхней части, а -60 внизу. Что же можно сказать об этих графиках? Согласно условию задачи два поезда едут навстречу друг другу, по параллельным путям, поэтому если мы выберем ось, связанную с направлением скорости одного из поездов, то проекция скорости одного тела будет положительной, а проекция скорости другого отрицательной (поскольку сама скорость направлена против выбранной оси). Поэтому ни первый график, ни второй к ответу не подходят. Когда проекция скорости имеет одинаковый знак, нужно говорить о том, что два поезда движутся в одну сторону. Если мы выбираем систему отсчета, связанную с 1 поездом, то тогда величина 60 км/ч будет положительной, а величина -40 км/ч – отрицательной, поезд едет навстречу. Или наоборот, если мы связываем систему отчета со вторым поездом, то у одного из них проекция скорости 40 км/ч, а у другого -60 км/ч, отрицательная. Таким образом, подходят оба графика (3 и 4).

Ответ: 3 и 4 графики.

Задача на определение скорости при равнозамедленном движении

Условие: автомобиль движется со скоростью 36 км/ч, и в течение 10 с тормозит с ускорением 0,5 м/с 2 . Необходимо определить его скорость в конце торможения

В данном случае удобнее выбрать ось ОХ и направить начальную скорость вдоль этой оси, т.е. вектор начальной скорости будет направлен в ту же сторону, что и ось. Ускорение будет направлено в противоположную сторону, ведь автомобиль замедляет свое движение. Проекция ускорения на ось ОХ будет со знаком минус. Для нахождения мгновенной, конечной скорости воспользуемся уравнением проекции скорости. Запишем следующее: V x = V 0x - at. Подставляя значения, получаем конечную скорость 5 м/с. Значит, через 10 с после торможения скорость будет 5 м/с. Ответ: V x = 5 м/с.

Задача на определение ускорения по графику скорости

На графике представлены 4 зависимости скорости от времени, и необходимо определить, у какого из этих тел максимальное, а у какого минимальное ускорения.

Рис. 4. К условию задачи 4

Для решения необходимо рассмотреть все 4 графика поочередно.

Для сравнения ускорений нужно определить их значения. Для каждого тела ускорение будет определяться как отношение изменения скорости ко времени, в течение которого это изменение произошло. Ниже проведены расчеты ускорения для всех четырех тел:

Как видим, у второго тела модуль ускорения минимальный, а у третьего тела – максимальный.

Ответ: |a 3 | - max, |a 2 | - min.






Урок 11. Решение задач по теме «Прямолинейное равномерное и неравномерное движение»

Ерюткин Евгений Сергеевич

Давайте рассмотрим две задачи, причем решение одной из них – в двух вариантах.

Задача на определение пройденного пути при равнозамедленном движении

Условие: самолет, летящий со скоростью 900 км/ч, совершает посадку. Время до полной остановки самолета 25 с. Необходимо определить длину взлетной полосы.

Рис. 1. К условию задачи 1

Траектория (от позднелатинского trajectories – относящийся к перемещению) – это линия, по которой движется тело (материальная точка). Траектория движения может быть прямой (тело перемещается в одном направлении) и криволинейной, то есть механическое движение может быть прямолинейным и криволинейным.

Траектория прямолинейного движения в данной системе координат – это прямая линия. Например, можно считать, что траектория движения автомобиля по ровной дороге без поворотов является прямолинейной.

Криволинейное движение – это движение тел по окружности, эллипсу, параболе или гиперболе. Пример криволинейного движения – движение точки на колесе движущегося автомобиля или движение автомобиля в повороте.

Движение может быть сложным. Например, траектория движения тела в начале пути может быть прямолинейной, затем криволинейной. Например, автомобиль в начале пути движется по прямой дороге, а затем дорога начинает «петлять» и автомобиль начинает криволинейное движение.

Путь

Путь – это длина траектории. Путь является скалярной величиной и в международной системе единиц СИ измеряется в метрах (м). Расчёт пути выполняется во многих задачах по физике. Некоторые примеры будут рассмотрены далее в этом учебнике.

Вектор перемещения

Вектор перемещения (или просто перемещение ) – это направленный отрезок прямой, соединяющий начальное положение тела с его последующим положением (рис. 1.1). Перемещение – величина векторная. Вектор перемещения направлен от начальной точки движения к конечной.

Модуль вектора перемещения (то есть длина отрезка, который соединяет начальную и конечную точки движения) может быть равен пройденному пути или быть меньше пройденного пути. Но никогда модуль вектора перемещения не может быть больше пройденного пути.

Модуль вектора перемещения равен пройденному пути, когда путь совпадает с траекторией (см. разделы и ), например, если из точки А в точку Б автомобиль перемещается по прямой дороге. Модуль вектора перемещения меньше пройденного пути, когда материальная точка движется по криволинейной траектории (рис. 1.1).

Рис. 1.1. Вектор перемещения и пройденный путь.

На рис. 1.1:

Ещё пример. Если автомобиль проедет по кругу один раз, то получится, что точка начала движения совпадёт с точкой конца движения и тогда вектор перемещения будет равен нулю, а пройденный путь будет равен длине окружности. Таким образом, путь и перемещение – это два разных понятия .

Правило сложения векторов

Векторы перемещений складываются геометрически по правилу сложения векторов (правило треугольника или правило параллелограмма, см. рис. 1.2).

Рис. 1.2. Сложение векторов перемещений.

На рис 1.2 показаны правила сложения векторов S1 и S2:

а) Сложение по правилу треугольника
б) Сложение по правилу параллелограмма

Проекции вектора перемещения

При решении задач по физике часто используют проекции вектора перемещения на координатные оси. Проекции вектора перемещения на координатные оси могут быть выражены через разности координат его конца и начала. Например, если материальная точка переместилась из точки А в точку В, то при этом вектор перемещения (см.рис. 1.3).

Выберем ось ОХ так, чтобы вектор лежал с этой осью в одной плоскости. Опустим перпендикуляры из точек А и В (из начальной и конечной точек вектора перемещения) до пересечения с осью ОХ. Таким образом мы получим проекции точек А и В на ось Х. Обозначим проекции точек А и В соответственно А x и В x . Длина отрезка А x В x на оси ОХ – это и есть проекция вектора перемещения на ось ОХ, то есть

S x = A x B x

ВАЖНО!
Напоминаю для тех, кто не очень хорошо знает математику: не путайте вектор с проекцией вектора на какую-либо ось (например, S x). Вектор всегда обозначается буквой или несколькими буквами, над которыми находится стрелка. В некоторых электронных документах стрелку не ставят, так как это может вызвать затруднения при создании электронного документа. В таких случаях ориентируйтесь на содержание статьи, где рядом с буквой может быть написано слово «вектор» или каким-либо другим способом вам указывают на то, что это именно вектор, а не просто отрезок.

Рис. 1.3. Проекция вектора перемещения.

Проекция вектора перемещения на ось ОХ равна разности координат конца и начала вектора, то есть

S x = x – x 0

Аналогично определяются и записываются проекции вектора перемещения на оси OY и OZ:

S y = y – y 0 S z = z – z 0

Здесь x 0 , y 0 , z 0 — начальные координаты, или координаты начального положения тела (материальной точки); x, y, z — конечные координаты, или координаты последующего положения тела (материальной точки).

Проекция вектора перемещения считается положительной, если направление вектора и направление координатной оси совпадают (как на рис 1.3). Если направление вектора и направление координатной оси не совпадают (противоположны), то проекция вектора отрицательна (рис. 1.4).

Если вектор перемещения параллелен оси, то модуль его проекции равен модулю самого Вектора. Если вектор перемещения перпендикулярен оси, то модуль его проекции равен нулю (рис. 1.4).

Рис. 1.4. Модули проекции вектора перемещения.

Разность между последующим и начальным значениями какой-нибудь величины называется изменением этой величины. То есть проекция вектора перемещения на координатную ось равна изменению соответствующей координаты. Например, для случая, когда тело перемещается перпендикулярно оси Х (рис. 1.4) получается, что относительно оси Х тело НЕ ПЕРЕМЕЩАЕТСЯ. То есть перемещение тела по оси Х равно нулю.

Рассмотрим пример движения тела на плоскости. Начальное положение тела – точка А с координатами х 0 и у 0 , то есть А(х 0 , у 0). Конечное положение тела – точка В с координатами х и у, то есть В(х, у). Найдём модуль перемещения тела.

Из точек А и В опустим перпендикуляры на оси координат ОХ и OY (рис. 1.5).

Рис. 1.5. Движение тела на плоскости.

Определим проекции вектора перемещения на осях ОХ и OY:

S x = x – x 0 S y = y – y 0

На рис. 1.5 видно, что треугольник АВС – прямоугольный. Из этого следует, что при решении задачи может использоваться теорема Пифагора , с помощью которой можно найти модуль вектора перемещения, так как

АС = s x CB = s y

По теореме Пифагора

S 2 = S x 2 + S y 2

Откуда можно найти модуль вектора перемещения, то есть длину пути тела из точки А в точку В:

Ну и напоследок предлагаю вам закрепить полученные знания и рассчитать несколько примеров на ваше усмотрение. Для этого введите какие-либо цифры в поля координат и нажмите кнопку РАССЧИТАТЬ. Ваш браузер должен поддерживать выполнение сценариев (скриптов) JavaScript и выполнение сценариев должно быть разрешено в настройках вашего браузера, иначе расчет не будет выполнен. В вещественных числах целая и дробная части должны разделяться точкой, например, 10.5.



Траектория (от позднелатинского trajectories – относящийся к перемещению) – это линия, по которой движется тело (материальная точка). Траектория движения может быть прямой (тело перемещается в одном направлении) и криволинейной, то есть механическое движение может быть прямолинейным и криволинейным.

Траектория прямолинейного движения в данной системе координат – это прямая линия. Например, можно считать, что траектория движения автомобиля по ровной дороге без поворотов является прямолинейной.

Криволинейное движение – это движение тел по окружности, эллипсу, параболе или гиперболе. Пример криволинейного движения – движение точки на колесе движущегося автомобиля или движение автомобиля в повороте.

Движение может быть сложным. Например, траектория движения тела в начале пути может быть прямолинейной, затем криволинейной. Например, автомобиль в начале пути движется по прямой дороге, а затем дорога начинает «петлять» и автомобиль начинает криволинейное движение.

Путь

Путь – это длина траектории. Путь является скалярной величиной и в международной системе единиц СИ измеряется в метрах (м). Расчёт пути выполняется во многих задачах по физике. Некоторые примеры будут рассмотрены далее в этом учебнике.

Вектор перемещения

Вектор перемещения (или просто перемещение ) – это направленный отрезок прямой, соединяющий начальное положение тела с его последующим положением (рис. 1.1). Перемещение – величина векторная. Вектор перемещения направлен от начальной точки движения к конечной.

Модуль вектора перемещения (то есть длина отрезка, который соединяет начальную и конечную точки движения) может быть равен пройденному пути или быть меньше пройденного пути. Но никогда модуль вектора перемещения не может быть больше пройденного пути.

Модуль вектора перемещения равен пройденному пути, когда путь совпадает с траекторией (см. разделы Траектория и Путь), например, если из точки А в точку Б автомобиль перемещается по прямой дороге. Модуль вектора перемещения меньше пройденного пути, когда материальная точка движется по криволинейной траектории (рис. 1.1).

Рис. 1.1. Вектор перемещения и пройденный путь.

На рис. 1.1:

Ещё пример. Если автомобиль проедет по кругу один раз, то получится, что точка начала движения совпадёт с точкой конца движения и тогда вектор перемещения будет равен нулю, а пройденный путь будет равен длине окружности. Таким образом, путь и перемещение – это два разных понятия .

Правило сложения векторов

Векторы перемещений складываются геометрически по правилу сложения векторов (правило треугольника или правило параллелограмма, см. рис. 1.2).

Рис. 1.2. Сложение векторов перемещений.

На рис 1.2 показаны правила сложения векторов S1 и S2:

а) Сложение по правилу треугольника
б) Сложение по правилу параллелограмма

Проекции вектора перемещения

При решении задач по физике часто используют проекции вектора перемещения на координатные оси. Проекции вектора перемещения на координатные оси могут быть выражены через разности координат его конца и начала. Например, если материальная точка переместилась из точки А в точку В, то при этом вектор перемещения (рис. 1.3).

Выберем ось ОХ так, чтобы вектор лежал с этой осью в одной плоскости. Опустим перпендикуляры из точек А и В (из начальной и конечной точек вектора перемещения) до пересечения с осью ОХ. Таким образом мы получим проекции точек А и В на ось Х. Обозначим проекции точек А и В соответственно А x и В x . Длина отрезка А x В x на оси ОХ – это и есть проекция вектора перемещения на ось ОХ, то есть

S x = A x B x

ВАЖНО!
Напоминаю для тех, кто не очень хорошо знает математику: не путайте вектор с проекцией вектора на какую-либо ось (например, S x). Вектор всегда обозначается буквой или несколькими буквами, над которыми находится стрелка. В некоторых электронных документах стрелку не ставят, так как это может вызвать затруднения при создании электронного документа. В таких случаях ориентируйтесь на содержание статьи, где рядом с буквой может быть написано слово «вектор» или каким-либо другим способом вам указывают на то, что это именно вектор, а не просто отрезок.


Рис. 1.3. Проекция вектора перемещения.

Проекция вектора перемещения на ось ОХ равна разности координат конца и начала вектора, то есть

S x = x – x 0 Аналогично определяются и записываются проекции вектора перемещения на оси OY и OZ: S y = y – y 0 S z = z – z 0

Здесь x 0 , y 0 , z 0 - начальные координаты, или координаты начального положения тела (материальной точки); x, y, z - конечные координаты, или координаты последующего положения тела (материальной точки).

Проекция вектора перемещения считается положительной, если направление вектора и направление координатной оси совпадают (как на рис 1.3). Если направление вектора и направление координатной оси не совпадают (противоположны), то проекция вектора отрицательна (рис. 1.4).

Если вектор перемещения параллелен оси, то модуль его проекции равен модулю самого Вектора. Если вектор перемещения перпендикулярен оси, то модуль его проекции равен нулю (рис. 1.4).

Рис. 1.4. Модули проекции вектора перемещения.

Разность между последующим и начальным значениями какой-нибудь величины называется изменением этой величины. То есть проекция вектора перемещения на координатную ось равна изменению соответствующей координаты. Например, для случая, когда тело перемещается перпендикулярно оси Х (рис. 1.4) получается, что относительно оси Х тело НЕ ПЕРЕМЕЩАЕТСЯ. То есть перемещение тела по оси Х равно нулю.

Рассмотрим пример движения тела на плоскости. Начальное положение тела – точка А с координатами х 0 и у 0 , то есть А(х 0 , у 0). Конечное положение тела – точка В с координатами х и у, то есть В(х, у). Найдём модуль перемещения тела.

Из точек А и В опустим перпендикуляры на оси координат ОХ и OY (рис. 1.5).

Рис. 1.5. Движение тела на плоскости.

Определим проекции вектора перемещения на осях ОХ и OY:

S x = x – x 0 S y = y – y 0

На рис. 1.5 видно, что треугольник АВС – прямоугольный. Из этого следует, что при решении задачи может использоваться теорема Пифагора , с помощью которой можно найти модуль вектора перемещения, так как

АС = s x CB = s y

По теореме Пифагора

S 2 = S x 2 + S y 2

Откуда можно найти модуль вектора перемещения, то есть длину пути тела из точки А в точку В:

Ну и напоследок предлагаю вам закрепить полученные знания и рассчитать несколько примеров на ваше усмотрение. Для этого введите какие-либо цифры в поля координат и нажмите кнопку РАССЧИТАТЬ. Ваш браузер должен поддерживать выполнение сценариев (скриптов) JavaScript и выполнение сценариев должно быть разрешено в настройках вашего браузера, иначе расчет не будет выполнен. В вещественных числах целая и дробная части должны разделяться точкой, например, 10.5.



Поделиться: