Измерение: виды измерения. Виды измерений, классификация, погрешности, методы и средства. Методы измерения прямые и косвенные Что называется косвенными измерениями

Слово имеет два разных смысла. В первом случае имеется в виду создание обозначения для какой-то единицы. Во втором же мера необходима для того, чтобы воспроизвести единичное значение параметра.

Общие сведения

Показателем физической величины называют необходимое для проведения измерений средство. Оно используется для того, чтобы воспроизводить и хранить заданные физические единицы. Сюда можно отнести, например, гирю или измерительное сопротивление. Во всем мире существует единое определение для понятия "метрология". Это раздел науки, изучающий измерения, методику их объединения, а также правила получения необходимого уровня точности. Термин "метрология" образован от слов греческого языка, которые вместе обозначают "изучение мер".

Единство измерений

Существуют определенные правила записи, при которых показатели регистрируются в единицах, принятых законом. При этом для погрешностей результатов существуют пределы. В этих рамках показатели считаются допустимыми. Поэтому создаются различные измерений, которые отличаются по степени отклонения. Главной задачей правил записи является преобразование всех результатов, полученных в разных точках, в разные моменты, с использованием различных приборов и методов, в единую систему. В наше время необходимо получение более точных и достоверных данных в сферах науки и экономики. Поэтому так усиленно изучаются виды измерений. Метрология имеет огромное значение.

Измерение. Виды измерения

Существуют различные взаимодействующие операции, задачей которых является установка типов отношений между величиной, которую оценивают, и той, что считают единицей. Последняя зафиксирована в устройстве для измерения. Числовое значение - это полученные данные. У них есть и другое название - показатель физической величины. Существуют различные виды средств измерений. К ним относятся и сами единицы, и приборы, и специальные преобразователи, а также системы и установки. Обширно и значение понятия "измерение". Виды измерения также очень разнообразны. Однако при этом есть некоторые общие моменты. Виды и объединены одной структурой. Процедуры оценки состоят из двух этапов. В первую очередь нужно сравнить измеряемую величину с эталонной единицей, после чего конвертировать в нужный формат, обратившись к определенному способу.

Вариативность

Разнообразием отличаются не только виды измерений. Классификация приборов для проведения данной процедуры также предполагает наличие разных разделов. Принята систематизация по назначению, например. Одну группу приборов называют образцовыми, а другую - рабочими. Первые необходимы для того, чтобы использовать их как эталон для проверки точности других измерений. К рабочим относятся те, которые предназначаются для оценки размеров конкретных величин, используемых человеком. Можно сказать, что смысл такой классификации заключается не в точности приборов, а в различиях по предназначению. Существуют различные средства, при помощи которых осуществляется измерение. Виды измерения включают в себя и специальные меры, при помощи которых воспроизводят какую-либо величину конкретного размера.

Однозначные и многозначные меры. Различия

Также существуют однозначные и многозначные меры. К первым относятся те, что способны показывать лишь величины с одним и тем же размером. С многозначными доступно воспроизведение последовательности различных размеров. Такой мерой можно назвать, скажем, миллиметровую линейку. Существуют также своеобразные наборы, которые формируются из различных совокупностей мер. Они воссоздают промежуточные и суммарные значения величин. Кроме того, меры, взаимодействуя, могут выполнять общую работу, а могут действовать и отдельно каждая. Для того чтобы с мерой, необходимо воспользоваться специальным устройством - компаратором. В роли этого средства часто выступают равноплечие весы и измерительный мост.

Если подробнее изучить однозначные меры, то можно будет сказать, что к ним также причисляют образцы и вещества, выступающие в этой роли. Они имеют определенный состав и свойства. Малейшие отклонения недопустимы. Такие эталонные вещества могут помочь оценить шероховатость, твердость, выявить любые другие свойства материалов. Образцы помогают создавать точки, формирующие шкалы. Цинк и золото, например, применяют, когда требуется воссоздать определенную температуру.

Разряды

Погрешность при оценке классифицирует все меры на несколько последовательных разрядов. В случае с отклонением от эталона самих мер образуется классовое деление. Единицами определенного разряда проверяются погрешности приборов измерения, благодаря чему их причисляют к образцам.

Преобразователи. Общие сведения

Прибор для измерения, который формирует из полученной после измерения информации такие данные, которые возможно конвертировать, хранить и обрабатывать, однако не открывает к ним визуального доступа, называется измерительным преобразователем. Что собой представляет его действие? Рассмотрим это подробнее.

Суть преобразования

Когда величина только подготавливается к обработке, ее называют входным значением. А полученная информация приобретает название "выходная". Преобразователь-усилитель - это такой прибор, который не меняет физическое состояние обрабатываемых данных, а преобразование имеет вид линейной функции. Термин "усилитель" используется вместе со словом, объясняющим его действие. Например, "усилитель напряжения". Если же во время преобразования величина конвертируется в другую, то название прибор получает от нового значения - "электромеханический".

Типы преобразователей

В зависимости от того, в какой части устройства он находится, преобразователь может быть первичным. Это значит, что измеряемая величина проходит сразу через него. Он может быть и передающим. При этом значения возникают после обработки. Преобразователь может быть и промежуточным. Он располагается следом за первичным.

Приборы. Общие сведения

Измерительные приборы считаются такими средствами получения данных о величине, которые представляют их в формате, доступном для визуального изучения. В зависимости от типа оценки они объединяются в определенные группы. Так, самыми распространенными считаются приборы, проводящие прямые измерения. Их особенностью является то, что они конвертируют исходные данные, не оставляя информации об их начальном состоянии. Существуют и приспособления, при помощи которых осуществляются и косвенные измерения.

Приборы сравнения

Однако приспособления с прямым действием не являются самыми точными. Гораздо выше эта характеристика у прибора сравнения. Его работа основывается на сопоставлении данных, полученных при измерении изучаемой величины с уже известной информацией о других значениях. Этот способ и имеет название "косвенные измерения". Их получение возможно при наличии исходных данных. Другими словами, параметры формируются из показателей, которые выдает непосредственное измерение. Виды измерения имеют еще несколько категорий. Для того чтобы сравнить значения, необходимо воспользоваться компенсационными или мостовыми цепями. Первыми сравнивают те величины, которые обладают некоторой энергией или силой. Этот способ основывается на том, что сравниваемые величины подключают к контуру цепи и изучают их проявление. В том же случае, если величина считается пассивной, то есть обладает сопротивлением, применяют мостовые цепи.

Распределение по способу отсчета

У приборов существуют различные методы отсчета данных для изучаемых величин. Поэтому была создана специальная классификация. На ее основе можно сделать вывод о том, что существуют воспроизводящие приборы, к которым относятся не только аналоговые, но и цифровые. Другой вид устройств - те, что регистрируют информацию. Самыми популярными считаются аналоговые устройства. Их составляющая, отвечающая за ведение отсчета, формируется из двух деталей. Первой является шкала, которая подключена к движущейся части. Другой элемент прибора - это указатель, соединенный с корпусом устройства. Действие измерителей, работа которых основывается на цифровом принципе, является результатом действия механических и электронных элементов.

Вариативность по способу записи

Существует и другая классификация регистрирующих приборов. Например, по методу, при помощи которого записывают данные устройства регистрации. Встречаются приборы-самописцы, а также печатающие. Первые предоставляют полученную и обработанную информацию и совокупные измерения в виде графиков, схем и диаграмм. Регистраторы, работающие по второму принципу, выдают результаты работы на ленте бумаги, преобразуя их в числовые ряды. Очень часто встречаются приборы, работающие по модели сравнения, которые представляют собой комбинацию из всех указанных выше видов, то есть они представляют собой совокупность работы отсчета по шкале и цифровой методике. Регистрация данных, их обработка и печать могут производиться как в виде графиков с диаграммами, так и рядами цифровых значений и чисел.

Вспомогательные элементы оценки

Существуют также вспомогательные приборы и средства для проведения измерений. Особенностью таких устройств является то, что они не только проводят исследование величин самостоятельно. Они могут регулировать работу главного элемента, изменяя его действие в момент считывания информации, а также при ее обработке или выдаче. Данные, которые выдаются дополнительными средствами, помогают контролировать и редактировать показания устройств. Например, для более четкой работы термометров необходимо также установить манометры, измеряющие давление окружающей среды. Кроме того, вспомогательные приборы могут изменять настройки работы измерителя. Так, в случае с использованием прибора для регистрации уровня влажности нужно установить значения диапазона.

Установки

Бывают ситуации, когда, для того чтобы получить более точные данные измерения, одного устройства оказывается недостаточно. В этом случае собираются комплексные установки, состоящие из приспособлений разного назначения. Они располагаются в определенной последовательности на ограниченной территории. Некоторые из используемых устройств преобразуют совокупные измерения в единую систему. Она предоставляется ответственному за сбор, систематизацию и обработку информации наблюдателю.

Системы

На ином уровне находятся измерительные системы. Отличие таких комплексов от описанных выше установок в том, что они могут быть разбросаны по огромным территориям, а связываться посредством специальных информационных каналов. Данные в таких системах предоставляются в двух видах. Один из них доступнее для реального человека, изучающего результаты работы. Обработкой другого занимается компьютер.

Индикаторы

Существуют приборы, задачей которых является считывание проявлений физических свойств. Их называют индикаторами. Еще из школьного курса химии всем известны относящиеся к средствам индикации. Стрелка компаса тоже считается таким устройством. Более того, счетчик, отображающий уровень количества топлива в автомобильном бензобаке, также является индикатором.

Прямые измерения

Прямое измерение

Прямое измерение - это измерение, при котором искомое значение физической величины находится непосредственно из опытных данных в результате сравнения измеряемой величины с эталонами.

  • измерение длины линейкой .
  • измерение электрического напряжения вольтметром .

Косвенное измерение

Косвенное измерение - измерение, при котором искомое значение величины находится на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям.

  • сопротивление резистора находим на основании закона Ома подстановкой значений силы тока и напряжения, получаемых в результате прямых измерений.

Совместное измерение

Совместное измерение - одновременное измерение нескольких неодноименных величин, для нахождения зависимости между ними. При этом решается система уравнений.

  • определение зависимости сопротивления от температуры . При этом измеряются неодноименные величины, по результатам измерений определяется зависимость.

Совокупное измерение

Совокупное измерение - одновременное измерение нескольких одноименных величин, при котором искомые значения величин находятся решением системы уравнений, состоящих из результирующих прямых измерений различных сочетаний этих величин.

  • измерение сопротивления резисторов, соединённых треугольником. При этом измеряется значение сопротивления между вершинами. По результатам определяются сопротивления резисторов.

Wikimedia Foundation . 2010 .

Смотреть что такое "Прямые измерения" в других словарях:

    ПРЯМЫЕ ИЗМЕРЕНИЯ - – измерения, при которых мера или прибор применяются непосредственно для измерения данной величины … Современный образовательный процесс: основные понятия и термины

    Прямые измерения изменения коэффициента масштабного преобразования ПМП (дифференциального затухания переменного аттенюатора) - Измерение отношения мощностей на выходе ПМП (переменного аттенюатора) с помощью ИО при идеально стабильном генераторе 1 генератор; 2 ПМП; 3 ИО Источник …

    Прямые измерения коэффициента масштабного преобразования ПМФ (коэффициента передачи К П M - Измерение с помощью ВПМ отношения мощностей на выходе идеально стабильного генератора при отсутствии (P1) и при наличии (Р2) между ними ПМФ (калиброванного аттенюатора) 1 генератор; 2 ПМФ (аттенюатор); 3 ВПМ; Источник … Словарь-справочник терминов нормативно-технической документации

    Прямые измерения мощности (или напряжения) ВПМ (или вольтметром) - 1 генератор; 2 ВПМ или вольтметр Источник … Словарь-справочник терминов нормативно-технической документации

    Измерения служат для получения точного, объективного и легко воспроизводимого описания физической величины. Не производя измерений, нельзя охарактеризовать физическую величину количественно. Чисто словесные определения низкая или высокая… … Энциклопедия Кольера

    ГОСТ Р 8.736-2011: Государственная система обеспечения единства измерений. Измерения прямые многократные. Методы обработки результатов измерений. Основные положения - Терминология ГОСТ Р 8.736 2011: Государственная система обеспечения единства измерений. Измерения прямые многократные. Методы обработки результатов измерений. Основные положения оригинал документа: 3.11 грубая погрешность измерения: Погрешность… … Словарь-справочник терминов нормативно-технической документации

    Погрешность измерения - разность между измеренным и истинным или заданным значением параметра. Источник: НПБ 168 97*: Карабин пожарный. Общие технические требования. Методы испытаний 3.11 погрешность измерения: Отклонение результата измерения от действительного значения … Словарь-справочник терминов нормативно-технической документации

    результат измерения - 3.5 результат измерения: Значение параметра, полученное после проведения измерения. Источник: ГОСТ Р 52205 2004: Угли каменные. Метод спектрометрического определения генетических и технологических параметров … Словарь-справочник терминов нормативно-технической документации

    результат измерения физической величины; результат измерения; результат - результат измерения физической величины; результат измерения; результат: Значение величины, полученное путем ее измерения. [Рекомендации по межгосударственной стандартизации , статья 8.1] Источник … Словарь-справочник терминов нормативно-технической документации

    грубая погрешность измерения - 3.11 грубая погрешность измерения: Погрешность измерения, существенно превышающая зависящие от объективных условий измерений значения систематической и случайной погрешностей. Источник … Словарь-справочник терминов нормативно-технической документации

Книги

  • Методы и средства измерения скорости звука в море , И. И. Микушин , Г. Н. Серавин , Книга содержит систематизированное описание современных методов и судовых средств измерения скорости звука в морской воде. В ней подробно рассмотрены прямые методы измерения скорости звука -… Категория: Научная и техническая литература Издатель: Судостроение , Производитель:

По способу получения значений физической величины измерения могут быть прямыми, косвенными, совокупными и совместными, каждое из которых проводится абсолютным и относительным методами (см. п. 3.2.).

Рис. 3. Классификация видов измерений

Прямое измерение – измерение, при котором искомое значение величины находят непосредственно из опытных данных. Примерами прямых измерений являются определения длины с помощью линейных мер или температуры термометром. Прямые измерения составляют основу более сложных косвенных измерений.

Косвенное измерение – измерение, при котором искомое значение величины находят на основании известной зависимости между этой величиной и величинами, полученными прямыми измерениями, например, тригонометрические методы измерения углов, при которых острый угол прямого треугольника определяют по измеренным длинам катетов и гипотенузы или измерение среднего диаметра резьбы методом трех проволочек или, мощности электрической цепи по измеренным вольтметром напряжению и амперметром силе тока, используя известную зависимость. Косвенные измерения в ряде случаев позволяют получить более точные результаты, чем прямые измерения. Например, погрешности прямых измерений углов угломерами на порядок выше погрешностей косвенных измерений углов с помощью синусных линеек.

Совместными называют производимые одновременно измерения двух или нескольких разноименных величин. Целью этих измерений является нахождение функциональной связи между величинами.

Пример 1. Построение градуировочной характеристики y = f(x) измерительного преобразователя, когда одновременно измеряются наборы значений:

X 1 , X 2 , X 3 , …, X i , …,X n

Y 1 , Y 2 , Y 3 , …, Y i , …,Y n

Пример 2 . Определение температурного коэффициента сопротивления путем одновременного измерения сопротивления R и температуры t , а затем определение зависимости a(t) = DR/Dt :

R 1 , R 2 , …, R i , …, R n

t 1 , t 2 , …, t i , …, t n

Совокупные измерения осуществляются путем одновременного измерения нескольких одноименных величин, при которых искомое значение находят решением системы уравнений, получаемых в результате прямых измерений различных сочетаний этих величин.

Пример: значение массы отдельных гирь набора определяют по известному значению массы одной из гирь и по результатам измерений (сравнений) масс различных сочетаний гирь.



Имеются гири массами m 1 , m 2 , m 3 .

Масса первой гири определится следующим образом:

Масса второй гири определится как разность массы первой и второй гирь М 1,2 и измеренной массы первой гири :

Масса третьей гири определится как разность массы первой, второй и третьей гирь (M 1,2,3 ) и измеренных масс первой и второй гирь ():

Часто именно этим путем добиваются повышения точности результатов измерения.

Совокупные измерения отличаются от совместных только тем, что при совокупных измерениях одновременно измеряют несколько одноименных величин, а при совместных – разноименных.

Совокупные и совместные измерения часто применяют при измерении различных параметров и характеристик в области электротехники.

По характеру изменения измеряемой величины бывают статические, динамические и статистические измерения.

Статические – измерения неизменных во времени ФВ например, измерение длины детали при нормальной температуре.

Динамические – измерения изменяющихся во времени ФВ, например измерение расстояния до уровня земли со снижающегося самолета, или напряжение в сети переменного тока.

Статистические измерения связаны с определением характеристик случайных процессов, звуковых сигналов, уровня шумов и т.д.

По точности существуют измерения с максимально возможной точностью, контрольно-поверочные и технические.

Измерения с максимально возможной точностью – это эталонные измерения, связанные с точностью воспроизведения единиц физической величины, измерения физических констант. Эти измерения определяются существующим уровнем техники.

Контрольно–поверочные – измерения, погрешность которых не должна превышать некоторое заданное значение. К ним относятся измерения, выполняемые лабораториями государственного надзора за внедрением и соблюдением стандартов и состоянием измерительной техники, измерения заводскими измерительными лабораториями и другие, осуществляемые при помощи средств и методик, гарантирующих погрешность, не превышающую заранее заданного значения.

Технические измерения – измерения, в которых погрешность результата определяется характеристиками средств измерений (СИ). Это наиболее массовый вид измерений, проводится с помощью рабочих СИ, погрешность которых заранее известна и считается достаточной для выполнения данной практической задачи.

Измерения по способу выражения результатов измерений могут быть также абсолютными и относительными.

Абсолютное измерение – измерение, основанное на прямых измерениях одной или нескольких основных величин, а также на использовании значений физических констант. При линейных и угловых абсолютных измерениях, как правило, находят одну физическую величину, например, диаметр вала штангенциркулем. В некоторых случаях значения измеряемой величины определяют непосредственным отсчетом по шкале прибора, отградуированного в единицах измерения.

Относительное измерение – измерение отношения величины к одноименной величине, играющей роль единицы. При относительном методе измерений производится оценка значения отклонения измеряемой величины относительно размера установочной меры или образца. Примером является измерение на оптиметре или миниметре.

По числу измерений различают однократные и многократные измерения.

Однократные измерения – это одно измерение одной величины, т.е. число измерений равно числу измеряемых величин. Практическое применение такого вида измерений всегда сопряжено с большими погрешностями, поэтому следует проводить не менее трех однократных измерений и находить конечный результат как среднее арифметическое значение.

Многократные измерения характеризуются превышением числа измерений количества измеряемых величин. Обычно минимальное число измерений в данном случае больше трех. Преимущество многократных измерений – в значительном снижении влияний случайных факторов на погрешность измерения.

Приведенные виды измерений включают различные методы, т.е. способы решения измерительной задачи с теоретическим обоснованием по принятой методике.

При косвенных измерениях значение искомой величины находят по результатам прямых измерений других величин, с которыми измеряемая величина связана функциональной зависимостью. Пример косвенных измерений - измерение удельного сопротивления проводника по результатам измерения его сопротивления, площади поперечного сечения и длины.

В общем случае при косвенных измерениях имеет место нелинейная зависимость между измеряемой величиной и её аргументами

Если каждый из аргументов характеризуется своей оценкой и погрешностью

то (3.19) запишется в следующем виде:

Выражение (3.20) можно разложить в ряд Тейлора по степеням:

где - остаточный член ряда.

Из этого выражения можно записать абсолютную погрешность измерения X

Если принять R0 =0, что справедливо при малых погрешностях аргументов (xi0), то получаем линейное выражение для погрешности измерения. Такая операция называется линеаризацией нелинейного уравнения (3.19). В получаемом в этом случае выражении для погрешности - коэффициенты влияния, а Wixi - частные погрешности.

Пренебречь остаточным членом при оценке погрешности допустимо не всегда, т.к. в этом случае оценка погрешности оказывается смещенной. Поэтому, когда связь между X и xi в выражении (3.19) нелинейная, проверяют допустимость линеаризации по следующему критерию

где в качестве остаточного члена берут член ряда второго порядка

Если известны границы погрешностей аргументов (случай наиболее часто встречающийся при однократных измерениях), то легко определить максимальную погрешность измерения X:

Эту оценку обычно принимают при однократных измерениях и числе аргументов меньше 5.

При нормальном распределении всех аргументов и одинаковых доверительных вероятностях, выражение (3.25) упрощается

Обычно, особенно при однократных измерениях, законы распределения аргументов неизвестны, а вид суммарного распределения определить практически невозможно, учитывая трансформацию законов распределения при нелинейной связи измеряемой величины X и её аргументов. В этом случае в соответствии с методом ситуационного моделирования принимают закон распределения аргументов равновероятным. При этом доверительная граница погрешности результата косвенного измерения определится по формуле

где зависит от выбранной вероятности, числа слагаемых и соотношения между ними. Для равных по величине слагаемых и для=0,95 -=1,1; для =0,99 - =1,4.

Погрешности результатов измерения аргументов могут быть заданы не границами, а параметрами систематических и случайных составляющих погрешностей - границами и СКО. В этом случае оценивают отдельно систематическую и случайную составляющие погрешности косвенного измерения, а затем объединяют полученные оценки.

Что касается суммирования систематических погрешностей (или их неисключенных остатков), то оно осуществляется в зависимости от наличия сведений о распределении погрешностей с использованием выражений (3.24) - (3.27), в которых вместо погрешностей измерений аргументов следует подставить соответствующие границы для систематических погрешностей.

Случайные погрешности результатов косвенных измерений суммируются следующим образом.

Погрешность результата косвенного наблюдения, имеющего случайные погрешности аргументов j будет равна

Определим дисперсию этой погрешности

т.к. последнее слагаемое равно нулю, то

В этом выражении - ковариационная функция (корреляционный момент), равный нулю, если погрешности аргументов независимы друг от друга.

Вместо ковариационной функции часто пользуются коэффициентом корреляции

В этом случае дисперсия результата наблюдения будет иметь вид

Для получения дисперсии результата измерения необходимо разделить это выражение на число измерений n.

В этих выражениях rij - коэффициенты попарной корреляции между погрешностями измерений. Если rij = 0, то второе слагаемое в правой части (3.30) равно нулю и общее выражение для погрешности упрощается. Значение rij либо известно априорно (в случае однократных измерений), либо (для многократных измерений) его оценка определяется для каждой пары аргументов xi и xj по формуле

Наличие корреляционной связи между погрешностями аргументов имеет место в том случае, когда аргументы измеряются одновременно, однотипными приборами, находящимися в одинаковых условиях. Причиной возникновения корреляционной связи является изменение условий измерения (пульсации напряжения питающей сети, переменные наводки, вибрации и т.д.). О наличии корреляции удобно судить по графику, на котором изображены пары последовательно получаемых результатов измерений величин xi и xj .

При малом числе наблюдений может оказаться, что rij 0 даже при отсутствии корреляционной связи между аргументами. В этом случае необходимо пользоваться числовым критерием отсутствия корреляционной связи, который состоит в выполнении неравенства

где - коэффициент Стьюдента для заданной вероятности и числа измерений (табл. А5).

Границы случайной погрешности после определения оценки дисперсии результатов измерения определяются по формуле

где при неизвестном результирующем распределении берется из неравенства Чебышева

Неравенство Чебышева дает завышенную оценку погрешности результата измерений. Поэтому, когда число аргументов больше 4, распределение их одномодальны и среди погрешностей нет резко выделяющихся, число измерений, выполненных при измерении всех аргументов превышает 25-30, то определяется из нормированного нормального распределения для доверительной вероятности.

Трудности возникают при меньшем числе наблюдений. В принципе можно было бы воспользоваться распределением Стьюдента, но неизвестно как в этом случае определить число степеней свободы. Точного решения эта задача не имеет. Приближенную оценку числа степеней свободы, называемую эффективной, можно найти по формуле, предложенной Б. Уэлчем

Имея и заданную вероятность можно найти по распределению Стьюдента и, следовательно, .

Если при разложении в ряд Тейлора необходимо учитывать члены второго порядка, то дисперсию результата наблюдения следует определять по формуле

Границы суммарной погрешности измерений оценивают аналогично тому, как это было сделано для случая прямых измерений.

В общем случае, при многократных косвенных измерениях статистическая обработка результатов сводится к выполнению следующих операций:

  • 1) из результата наблюдений каждого аргумента исключаются известные систематические погрешности;
  • 2) проверяют, соответствует ли распределение групп результатов каждого аргумента заданному закону распределения;
  • 3) проверяют наличие резко выделяющихся погрешностей (промахов) и исключают их;
  • 4) вычисляют оценки аргументов и параметры их точности;
  • 5) проверяют отсутствие корреляции между результатами наблюдений аргументов попарно;
  • 6) вычисляют результат измерений и оценки параметров его точности;
  • 7) находят доверительные границы случайной погрешности, неисключенную систематическую погрешность и общую погрешность результата измерения.

Частные случаи вычисления погрешностей при косвенных измерениях

Наиболее простыми, но распространенными случаями зависимости между аргументами при косвенных измерениях являются случаи линейной зависимости, степенных одночленов и дифференциальной функции.

В случае линейной зависимости

не требуется проведения линеаризации выражения для погрешности, которое, очевидно будет иметь вид

То есть, вместо коэффициентов влияния можно использовать коэффициенты из выражения (3.34). Дальнейшее определение погрешности измерения будет производиться аналогично косвенным измерениям с линеаризацией.

Из этого выражения можно определить коэффициенты влияния

Подставляя (3.36) в (3.35) и деля обе части на, получаем искомую относительную погрешность

где - относительные погрешности измерения аргументов.

Таким образом, в случае уравнения измерения в виде степенных одночленов и представлении погрешностей в относительной форме, в качестве коэффициентов влияния берутся степени соответствующих одночленов.

Практический прием нахождения коэффициентов влияния при выражении погрешностей в форме относительных погрешностей состоит в том, что уравнение измерения сначала логарифмируют, а потом дифференцируют. В рассматриваемом случае

То есть полученное выражение аналогично (3.37).

В метрологии часто встречается дифференциальная функция вида

Дисперсия результата измерения в этом случае будет равна

Малое значение дисперсии может быть только в случае, когда в этом случае

Во всех остальных случаях отлично от нуля. При отсутствии корреляции

Максимальное значение дисперсии результата измерения будет в том случае, когда в этом случае

Таким образом, при измерении малых разностей дисперсия результата измерения может быть соизмерима с самим результатом измерения.

Критерий ничтожных погрешностей

Не все частные погрешности косвенных измерений играют одинаковую роль в формировании итоговой погрешности результата.

Поэтому интересно оценить, при каких условиях их присутствие не оказывает влияния на результат измерения.

При вероятностном суммировании результирующая погрешность будет равна

При отбрасывании k-й погрешности

откуда следует

и, следовательно,

Отличие между и можно считать незначительным, если оно не будет превышать погрешности округления при выражении значения погрешности результата измерения. Так как последняя не должна выражается более чем двумя значащими цифрами, а максимальная погрешность округления не будет превышать половины старшего отбрасываемого разряда, то отличие между и будет незначительным, если

С учетом предыдущего выражения

Таким образом, частной погрешностью можно пренебречь в том случае, когда она в три раза меньше, чем суммарная погрешность косвенного измерения.

Совместные измерения

Совместными называются проводимые одновременно измерения двух или нескольких неодноименных величин для нахождения зависимости между ними

Наиболее часто на практике определяют зависимость Y от одного аргумента x

При этом совместно измеряют n значений аргумента xi, i = 1, 2,... , n и соответствующие значения величины Yi и по полученным данным определяют функциональную зависимость (3.39). Этот случай мы и будем рассматривать в дальнейшем. Применяемые при этом методы прямо переносятся на зависимость от нескольких аргументов.

В метрологии совместные измерения двух аргументов применяются при градуировке СИТ, в результате которой определятся градуировочная зависимость, приводимая в паспорте СИТ в виде таблицы, графика или аналитического выражения. Предпочтительнее всего задавать ее в аналитическом виде, поскольку такая форма представления наиболее компактна и удобна для решения широкого круга практических задач.

Примером совместных измерений может служить задача определения температурной зависимости сопротивления терморезистора

R(t) = R20 + (t-20) + (t -20)2,

где R20 - сопротивление терморезистора при 20 оС;

Температурные коэффициенты сопротивления.

Для определения R20 , или производится измерение R(t) в n температурных точках (n>3) и по этим результатам определяется искомая зависимость.

При определении зависимости в аналитическом виде следует придерживаться следующего порядка действий.

  • 1. Построить график искомой зависимости Y=f(x).
  • 2. Задать предполагаемый функциональный вид зависимости

Y=f(x, A0, A1, … Am), (3.40)

где Aj - неизвестные параметры зависимости.

Вид зависимости может быть известен либо из физических закономерностей, описывающих явление, положенное в основу работы СИТ, либо на основе предыдущего опыта и предварительного анализа данных (анализ графика искомой зависимости).

  • 3. Выбрать метод определения параметров этой зависимости. При этом необходимо учитывать выбранный вид зависимости и априорные сведения о погрешности измерения xi и Yi.
  • 4. Вычислить оценки параметров A j зависимости выбранного вида.
  • 5. Оценить степень отклонения экспериментальной зависимости от аналитической, для проверки правильности выбора вида зависимости.
  • 6. Определить погрешности нахождения, используя известные характеристики случайных и систематических погрешностей измерения x и Y.

В современной математике разработаны многочисленные методы решения таких задач. Наиболее распространенными из них является метод наименьших квадратов (МНК). Этот метод разработал Карл Фридрих Гаусс еще в 1794 г. для оценки параметров орбит небесных тел и до сих пор он с успехом используется при обработке экспериментальных данных.

В МНК оценки параметров искомой зависимости определяют из условия, что сумма квадратов отклонений экспериментальных значений Y от расчетных значений минимальна, т.е.

где - невязки.

При рассмотрении МНК ограничимся случаем, когда искомая функция - полином, т.е.

Задача заключается в том, чтобы определить такие значения коэффициентов, при которых выполнялось бы условие (3.41).

Для этого запишем выражение для невязок в каждой экспериментальной точке

Число точек n выбирают значительно больше, чем m+1.

Это, как будет показано ниже, необходимо для уменьшения погрешности определения.

Согласно принципу наименьших квадратов (3.41), наилучшими значениями коэффициентов будут те, для которых сумма квадратов невязок

будет минимальна. Минимум функции многих переменных, как известно, достигается тогда, когда все ее частные производные равняются нулю. Поэтому дифференцируя (3.44), получаем

Следовательно, вместо исходной условной системы (3.42), которая вообще говоря есть система несовместная, так как имеет n уравнений с m+1 неизвестными (n > m+1), мы получим систему линейных относительно уравнений (3.45). В ней число уравнений при любом n точно равно числу неизвестных m+1. Система (3.45) называется нормальной системой.

Таким образом, поставленная задача заключается в приведении условной системы к нормальной.

Воспользовавшись обозначениями, введенными Гауссом

и после сокращения всех уравнений на 2 и перегруппировки членов, получим

Анализируя выражение (3.42) и (3.46) видим, что для получения первого уравнения нормальной системы достаточно просуммировать все уравнения системы (3.42). Для получения второго уравнения нормальной системы (3.42), суммируются все уравнения, предварительно умноженные на xi. То есть, для получения k-го уравнения нормальной системы необходимо умножить уравнения системы (3.42) на и просуммировать полученные выражения.

Наиболее кратко решение системы (3.45) описывается с помощью определителей

где главный определитель D равен

а определители DJ получаются из главного определителя D путем замены столбца с коэффициентами при неизвестном АJ на столбец со свободными членами

Оценка СКО величин, найденных как результат совместных измерений, выражается следующей формулой

Процессы весьма разнообразны. Это объясняется множеством экспериментальных величин, различным характером измерения величин, различными требованиями точности измерения и другие.

Наиболее распространена классификация видов измерений в зависимости от способа обработки экспериментальных данных. В соответствии с этой классификацией измерения делятся на прямые, косвенные, совместные и совокупные.

Прямое измерение

Прямое измерение - это измерение, при котором искомое значение физической величины находится непосредственно из опытных данных в результате сравнения измеряемой величины с эталонами.

  • измерение длины линейкой .
  • измерение электрического напряжения вольтметром .

Косвенное измерение

Косвенное измерение - измерение, при котором искомое значение величины находится на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям.

  • сопротивление резистора находим на основании закона Ома подстановкой значений силы тока и напряжения, получаемых в результате прямых измерений.

Совместное измерение

Совместное измерение - одновременное измерение нескольких неодноименных величин, для нахождения зависимости между ними. При этом решается система уравнений.

  • определение зависимости сопротивления от температуры . При этом измеряются неодноименные величины, по результатам измерений определяется зависимость.

Совокупное измерение

Совокупное измерение - одновременное измерение нескольких одноименных величин, при котором искомые значения величин находятся решением системы уравнений, состоящих из результирующих прямых измерений различных сочетаний этих величин.

  • измерение сопротивления резисторов, соединённых треугольником. При этом измеряется значение сопротивления между вершинами. По результатам определяются сопротивления резисторов.

Wikimedia Foundation . 2010 .

Смотреть что такое "Прямое измерение" в других словарях:

    прямое измерение - Измерение, при котором искомое значение физической величины получают непосредственно. Примечание. Термин прямое измерение возник как противоположный термину косвенное измерение. Строго говоря, измерение всегда прямое и рассматривается как… … Справочник технического переводчика

    прямое измерение - 3.5 прямое измерение (direct measurement): Измерение, посредством которого отдельные компоненты и/или группы компонентов определяются путем сравнения с идентичными компонентами в ГСО. Источник … Словарь-справочник терминов нормативно-технической документации

    Прямое измерение - 19) прямое измерение измерение, при котором искомое значение величины получают непосредственно от средства измерений;... Источник: Федеральный закон от 26.06.2008 N 102 ФЗ (ред. от 28.07.2012) Об обеспечении единства измерений … Официальная терминология

    прямое измерение - tiesioginis matavimas statusas T sritis Standartizacija ir metrologija apibrėžtis Matuojamojo dydžio vertės nustatymas tiesiog iš eksperimento duomenų. pavyzdys(iai) Kūno masės matavimas skaitmeninėmis svarstyklėmis. atitikmenys: angl. direct… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    прямое измерение - tiesioginis matavimas statusas T sritis fizika atitikmenys: angl. direct measurement vok. direkte Messung, f rus. непосредственное измерение, n; прямое измерение, n pranc. mesure directe, f … Fizikos terminų žodynas - У этого термина существуют и другие значения, см. Измерение (значения). Измерение совокупность операций для определения отношения одной (измеряемой) величины к другой однородной величине, принятой за единицу, хранящуюся в техническом… … Википедия

    Измерение - операция, посредством которой определяется отношение одной (измеряемой) величины к другой однородной величине (принимаемой за единицу); число, выражающее такое отношение, называется численным значением измеряемой величины.… … Энциклопедический словарь по металлургии



Поделиться: